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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
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Ultimately we would like Axiom to be able to prove that an algorithm generates correct
results. There are many steps between here and that goal, including proving one Axiom
algorithm correct through all of the levels from Spad code, to the Lisp code, to the C code,
to the machine code; a daunting task of its own.

The proof of a single Axiom algorithm is done with an eye toward automating the process.
Automated machine proofs are not possible in general but will exist for known algorithms.

Writing is nature’s way of letting you know how sloppy your thinking
is – Guindon[Lamp02]

Mathematics is nature’s way of letting you know how sloppy your
writing is. – Leslie Lamport[Lamp02]

The existence of the computer is giving impetus to the discovery of
algorithms that generate proofs. I can still hear the echos of the col-
lective sigh of relief that greeted the announcement in 1970 that there
is no general algorithm to test for integer solutions to polynomial Dio-
phantine equations; Hilbert’s tenth problem has no solution. Yet,
as I look at my own field, I see that creating algorithms that gener-
ate proofs constitutes some of the most important mathematics being
done. The all-purpose proof machine may be dead, but tightly tar-
geted machines are thriving. – Dave Bressoud [Bres93]

In contrast to humans, computers are good at performing formal pro-
cesses. There are people working hard on the project of actually for-
malizing parts of mathematics by computer, with actual formally cor-
rect formal deductions. I think this is a very big but very worthwhile
project, and I am confident that we will learn a lot from it. The
process will help simplify and clarify mathematics. In not too many
years, I expect that we will have interactive computer programs that
can help people compile significant chunks of formally complete and
correct mathematics (based on a few perhaps shaky but at least ex-
plicit assumptions) and that they will become part of the standard
mathematician’s working environment. – William P. Thurston [Thur94]

Our basic premise is that the ability to construct and modify programs
will not improve without a new and comprehensive look at the entire
programming process. Past theoretical research, say, in the logic of
programs, has tended to focus on methods for reasoning about indi-
vidual programs; little has been done, it seems to us, to develop a
sound understanding of the process of programming – the process by
which programs evolve in concept and in practice. At present, we lack
the means to describe the techniques of program construction and im-
provement in ways that properly link verification, documentation and
adaptability.

– Scherlis and Scott (1983) in [Maso86]

...constructive mathematics provides a way of viewing the language of
logical propositions as a specification language for programs. An ongoing
thrust of work in computer science has been to develop program speci-
fication languages and formalisms for systematically deriving programs
from specifications. For constructive mathematics to provide such a
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methodology, techniques are needed for systematically extracting pro-
grams from constructive proofs. Early work in this field includes that
of Bishop and Constable[Cons98]. What distinguished Martin-Löf ’s
’82 type theory was that the method it suggested for program syn-
thesis was exceptionally simple: a direct correspondence was set up
between the constructs of mathematical logic, and the constructs of a
functional programming language. Specifically, every proposition was
considered to be isomorphic to a type expression, and the proof of
a proposition would suggest precisely how to construct an inhabitant
of the type, which would be a term in a functional programming lan-
guage. The term that inhabits the type corresponding to a proposition
is often referred to as the computational content of the proposition.

– Paul Bernard Jackson[Jack95]

Q: Why bother doing proofs about programming languages? They are almost
always boring if the definitions are right.

A: The definitions are almost always wrong.

Type theory is nothing short of a grand unified theory of computation unified
with mathematics so ultimately there is no difference between math and the code.

– Robert Harper[Harp13]



Chapter 1

Here is a problem

Proving programs correct involves working with a second programming language, the proof
language, that is well-founded on some theory. Proofs (programs), can be reduced (compiled)
in this new language to the primitive constructs (machine language).

The ideal case would be that the programming language used, such as Spad, can be isomor-
phic, or better yet, syntactically the same as the proof language. Unfortunately that is not
(yet?) the case with Spad.

The COQ system language, Gallina, is the closest match to Spad.

1.1 Setting up the problem

The GCD function will be our first example of a proof.

The goal is to prove that Axiom’s implementation of the Euclidean GCD algorithm is correct.

We need to be clear about what is to be proven. In this case, we need to show that, given
GCD(a,b),

1. GCD is a function from a× b⇒ c

2. a and b are elements of the correct type

3. c, the result, is the correct type

4. the meaning of divisor

5. the meaning of a common divisor

6. GCD terminates

We next need to set up the things we know in ”the global environment”, generally referred
to as E in Coq.

Axiom’s GCD is categorically defined to work over any Euclidean domain. This means that
the axioms of a Euclidean domain are globally available. In fact, this is stronger than we
need since

• commutative rings ⊂ integral domains

• integral domains ⊂ integrally closed domains

• integrally closed domains ⊂ GCD domains

3
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• GCD domains ⊂ unique factorization domains

• unique factorization domains ⊂ principal ideal domains

• principal ideal domains ⊂ Euclidean domains

A Euclidean function on R is a function f from R
{0} to the non-negative integers satisfying the following fundamental division-with-remainder
property[WikiED]:

D(a, b) = set of common divisors of a and b.

gcd(a, b) = maxD(a, b)

1.2 Axiom NNI GCD

NonNegativeInteger inherits gcd from Integer up the “add chain” since it is a subtype of
Integer. Integer has EuclideanDomain as an ancestor[Book103]:

(1) -> getAncestors "Integer"

(1)

{AbelianGroup, AbelianMonoid, AbelianSemiGroup, Algebra, BasicType,

BiModule, CancellationAbelianMonoid, CharacteristicZero, CoercibleTo,

CombinatorialFunctionCategory, CommutativeRing, ConvertibleTo,

DifferentialRing, EntireRing, EuclideanDomain, GcdDomain,

IntegerNumberSystem, IntegralDomain, LeftModule, LeftOreRing,

LinearlyExplicitRingOver, Module, Monoid, OpenMath, OrderedAbelianGroup,

OrderedAbelianMonoid, OrderedAbelianSemiGroup,

OrderedCancellationAbelianMonoid, OrderedIntegralDomain, OrderedRing,

OrderedSet, PatternMatchable, PrincipalIdealDomain, RealConstant,

RetractableTo, RightModule, Ring, Rng, SemiGroup, SetCategory, StepThrough,

UniqueFactorizationDomain}

Type: Set(Symbol)

From category EuclideanDomain (EUCDOM) we find the implementation of the Euclidean
GCD algorithm[Book102]:

gcd(x,y) == --Euclidean Algorithm

x:=unitCanonical x

y:=unitCanonical y

while not zero? y repeat

(x,y):= (y,x rem y)

y:=unitCanonical y -- this doesn’t affect the

-- correctness of Euclid’s algorithm,

-- but

-- a) may improve performance

-- b) ensures gcd(x,y)=gcd(y,x)

-- if canonicalUnitNormal

x

The unitCanonical function comes from the category IntegralDomain (INTDOM) where
we find:

unitNormal: % -> Record(unit:%,canonical:%,associate:%)

++ unitNormal(x) tries to choose a canonical element

++ from the associate class of x.

++ The attribute canonicalUnitNormal, if asserted, means that
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++ the "canonical" element is the same across all associates of x

++ if \spad{unitNormal(x) = [u,c,a]} then

++ \spad{u*c = x}, \spad{a*u = 1}.

unitCanonical: % -> %

++ \spad{unitCanonical(x)} returns \spad{unitNormal(x).canonical}.

implemented as

UCA ==> Record(unit:%,canonical:%,associate:%)

if not (% has Field) then

unitNormal(x) == [1$%,x,1$%]$UCA -- the non-canonical definition

unitCanonical(x) == unitNormal(x).canonical -- always true

recip(x) == if zero? x then "failed" else _exquo(1$%,x)

unit?(x) == (recip x case "failed" => false; true)

if % has canonicalUnitNormal then

associates?(x,y) ==

(unitNormal x).canonical = (unitNormal y).canonical

else

associates?(x,y) ==

zero? x => zero? y

zero? y => false

x exquo y case "failed" => false

y exquo x case "failed" => false

true

Coq proves the following GCD function:

Fixpoint gcd a b :=

match a with

| 0 => b

| S a’ => gcd (b mod (S a’)) (S a’)

end.

This can be translated directly to working Spad code:

GCD(x:NNI,y:NNI):NNI ==

zero? x => y

GCD(y rem x,x)

with the test case results of:

(1) -> GCD(2415,945)

Compiling function mygcd2 with type (NonNegativeInteger,

NonNegativeInteger) -> NonNegativeInteger

(1) 105

Type: PositiveInteger

(2) -> GCD(0,945)

(2) 945

Type: PositiveInteger

(3) -> GCD(2415,0)

(3) 2415

Type: PositiveInteger

(4) -> GCD(17,15)

(4) 1

Type: PositiveInteger
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1.3 Mathematics

From Buchberger[Buch97],

Define “divides”
t|a⇐⇒ ∃u(t · u = a)

Define “greatest common divisor”

GCD(a, b) = ∀t max(t|a ∧ t|b)

Theorem:
(t|a ∧ t|b)⇐⇒ t|(a− b) ∧ t|b

Euclid’s Algorithm
a > b⇒ GCD(a, b) = GCD(a− b, b)

By the definition of GCD we need to show that

∀t max(t|a ∧ t|b) = ∀t max(t|(a− b) ∧ t|b)

Thus we need to show that

(t|a ∧ t|b)⇐⇒ (t|(a− b) ∧ t|b)

Let t be arbitrary but fixed and assume

(t|a ∧ t|b) (1.1)

We have to show
t|(a− b) (1.2)

and
t|b (1.3)

Equation 1.3 follows propositionally. For equation 1.2, by definition of “divides”, we have to
find a w such that

t · w = a− b (1.4)

From 1.1, by definition of “divides”, we know that for certain u and v

t · u = a

and
t · v − b

Hence,
a− b = t · u− t · v

But
t · u− t · v = t · (u− v)

So we need to find
w = u− v

and
Find w such that t · u− t · v = t · w
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1.4 Approaches

There are several systems that could be applied to approach the proof.

The plan is to initially look at Coq and ACL2. Coq seems to be applicable at the Spad level.
ACL2 seems to be applicable at the Lisp level. Both levels are necessary for a proper proof.

Coq is very close to Spad in spirit so we can use it for the high-level proofs.

ACL2 is a Lisp-level proof technology which can be used to prove the Spad-to-Lisp level.

There is an LLVM to ACL2 translator which can be used to move from the GCL Lisp level
to the hardware since GCL compiles to C. In particular, the ”Vellvm: Verifying the LLVM”
[Zdan14] project is important.

Quoting from Hardin [Hard14]

LLVM is a register-based intermediate in Static Single Assignment (SSA) form.
As such, LLVM supports any number of registers, each of which is only assigned
once, statically (dynamically, of course, a given register can be assigned any
number of times). Appel has observed that “SSA form is a kind of functional
programming”; this observation, in turn, inspired us to build a translator from
LLVM to the applicative subset of Common Lisp accepted by the ACL2 theo-
rem prover. Our translator produces an executable ACL2 specification that is
able to efficiently support validation via testing, as the generated ACL2 code
features tail recursion, as well as in-place updates via ACL2’s single-threaded
object (stobj) mechanism. In order to ease the process of proving properties
about these translated functions, we have also developed a technique for reason-
ing about tail-recursive ACL2 functions that execute in-place, utilizing a formally
proven “bridge” to primitive-recursive versions of those functions operating on
lists.

Hardin [Hard13] describes the toolchain thus:

Our translation toolchain architecture is shown in Figure 1. The left side of the
figure depicts a typical compiler frontend producing LLVM intermediate code.
LLVM output can be produced either as a binary “bitcode” (.bc) file, or as text
(.ll file). We chose to parse the text form, producing an abstract syntax tree
(AST) representation of the LLVM program. Our translator then converts the
AST to ACL2 source. The ACL2 source file can then be admitted into an ACL2
session, along with conjectures that one wishes to prove about the code, which
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ACL2 processes mostly automatically. In addition to proving theorems about
the translated LLVM code, ACL2 can also be used to execute test vectors at
reasonable speed.

Note that you can see the intermediate form from clang with

clang -O4 -S -emit-llvm foo.c

Both Coq and the Hardin translator use OCAML [OCAM14] so we will have to learn that
language.



Chapter 2

Theory

The proof of the Euclidean algorithm has been known since Euclid. We need to study an
existing proof and use it to guide our use of Coq along the same lines, if possible. Some of
the “obvious” natural language statements may require Coq lemmas.

From WikiProof [Wiki14a] we quote:

Let
a, b ∈ Z

and a ̸= 0 or b ̸= 0.

The steps of the algorithm are:

1. Start with (a, b) such that |a| ≥ |b|. If b = 0 then the task is complete and the GCD is
a.

2. if b ̸= 0 then you take the remainder r of a/b.

3. set a← b, b← r (and thus |a| ≥ |b| again).

4. repeat these steps until b = 0

Thus the GCD of a and b is the value of the variable a at the end of the algorithm.

The proof is:

Suppose
a, b ∈ Z

and aorb ̸= 0.

From the division theorem, a = qb+ r where 0 ≤ r ≤ |b|
From GCD with Remainder, the GCD of a and b is also the GCD of b and r.

Therefore we may search instead for the gcd(b, r).

Since |r| ≥ |b| and
b ∈ Z

, we will reach r = 0 after finitely many steps.

At this point, gcd(r, 0) = r from GCD with Zero.

We quote the Division Theorem proof [Wiki14b]:

For every pair of integers a, b where b ̸= 0, there exist unique integers q, r such that a = qb+r
and 0 ≤ r ≤ |b|.

9
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Hoare’s axioms and gcd proof

From Hoare[Hoar69]

A1 x+ y = y + x addition is commutative
A2 x× y = y × x multiplication is commutative
A3 (x+ y) + z = x+ (y + z) addition is associative
A4 (x× y)× z = x× (y × z) multiplication is associative
A5 x× (y + z) = x× y + x× z multiplication distributes through addition
A6 y ≤ x→ (x− y) + y = x addition cancels subtraction
A7 x+ 0 = x
A8 x× 0 = 0
A9 x× 1 = x

D0 Axiom of Assignment
⊢ P0{x := f}P

where

• x is a variable identifier

• f is an expression

• P0 is obtained from P by substituting f for all occurrences of x

2.1 The Division Algorithm

From Judson [Juds15],

An Application of the Principle of Well-Ordering that we will use often is the division
algorithm.

Theorem 2.9 Division Algorithm Let a and b be integers, with b > 0. Then there exists
unique integers q and r such that

a = bq + r

where 0 ≤ r < b.

Proof

Let a and b be integers. If b = ak for some integer k, we write a|b. An integer d is called
a common divisor of a and b if d|a and d|b. The greatest common divisor of integers a and
b is a positive integer d such that d is a common divisor of a and b and if d

′
is any other

common divisor of a and b, then d
′ |d. We write d = gcd(a, b); for example, gcd(24, 36) = 12

and gcd(120, 102) = 6. We say that two integers a and b are relatively prime if gcd(a, b) = 1.

Theorem 2.10 Let a and b be nonzero integers. Then there exist integers r and s such that

gcd(a, b) = ar + bs

Furthermore, the greatest common divisor of a and b is unique.

Proof

Corollary 2.11 Let a and b be two integers that are relatively prime. Then there exist
integers r and s such that

ar + bs = 1

The Euclidean Algorithm

Among other things, Theorem 2.10 allows us to compute the greatest common divisor of two
integers.
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Example 2.1.2 Let us compute the greatest common divisor of 945 and 2415. First observe
that

2415 = 945 · 2 + 525
945 = 525 · 1 + 420
525 = 420 · 1 + 105
420 = 105 · 4 + 0

Reversing our steps, 105 divides 420, 105 divides 525, 105 divides 945, and 105 divides 2415.
Hence, 105 divides both 945 and 2415. If d were another common divisor of 945 and 2415,
then d would also have to divide 105. Therefore, gcd(945, 2415) = 105.

If we work backward through the above sequence of equations, we can also obtain numbers
r and s such that

945r + 2415s = 105

105 = 525 + (−1) · 420
105 = 525 + (−1) · [945 + (−1) · 525]
105 = 2 · 525 + (−1) · 945
105 = 2 · [2415 + (−2) · 945] + (−1) · 945
105 = 2 ∗ 2415 + (−5) · 945

So r = −5 and s − 2. Notice the r and s are not unique, since r = 41 and s = −16 would
also work.

To compute gcd(a, b) = d, we are using repeated divisions to obtain a decreasing sequence
of positive integers r1 > r2 > . . . > rn = d; that is

b = aq1 + r1
a = r1q2 + r2
r1 = r2q3 + r3
...

rn−2 = rn−1qn + rn
rn−1 = rnqn+1

To find r and s such that ar+ bs = d, we begin with the last equation and substitute results
obtained from the previous equations:

d = rn
d = rn−2 − rn−1qn
d = rn−2 − qn(rn−3 − qn−1rn−2

d = −qnrn−3 + (1 + qnqn−1)rn−2

...
d = ra+ sb
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Chapter 3

GCD in Nuprl by Anne Trostle

Quoted from [Tros13]:

Here we show how to use the Nuprl proof assistant to develop an existence proof for the
greatest common divisor of two natural numbers. We then take the proof a step further and
show that the greatest common divisor, or GCD, can be calculated as a linear combination
of the two numbers. For each proof, we also show that Nuprl can extract a program from
the proof that can be used to perform calculations.

The greatest common divisor is defined in Nuprl as follows:

Defintion 1: gcd p

GCD(m : n : g) == (g|m) ∧ (g|n) ∧ (∀z : Z.(((z|m) ∧ (z|m))→ (z|g)))
Defintion 2: divides

b|a == ∃c : Z.(a = (b ∗ c))
In words, Definition 1 means that g is the greatest common divisor of m and n when g
divides both m and n, and any other common divisor of m and n divides g.

To prove that the GCD exists, we are going to use Euclid’s algorithm, whicc is based on the
property that for two integers m and n, the GCD of m and n is equivalent to the GCD of n
and the remainder from m÷ n:

Lemma 1: div rem gcd anne

∀m : Z. ∀n : Z−0, ∀g : Z.(GCD(m;n; g) ⇐⇒ GCD(n;m rem n; g))

Another useful fact about the GCD is that the GCD of an integer z and 0 is z. A proof of
this property can be done by showing that each part of Definition 1 is satisfied.

Lemma 2: gcd p zero

∀z : Z. GCD(z; 0; z)

From these properties we can see a method for calculating the greatest common divisor of
two numbers: continue finding remainders until you reach 0 and then use the fact that the
GCD of an integer z and 0 is z. Since the GCD stays the same as you reduce the terms,
z is also the GCD of the original pair of numbers. This is Euclid’s algorithm. Here is an
example of how it works, using 18 and 12:

GCD(18;12;g) = GCD(12;18 rem 12;g)
= GCD(12;6;g
= GCD(6;12 rem 6;g)
= GCD(6;0;g)
→ g = 6

13
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Using this idea we can not only prove that the GCD exists but we can also construct a
method for actually computing the GCD. A great feature of Nuprl is that when we run
a constructive existence proof, we can extract a program from it and use the program to
perform calculations. In the next section we show in detail how to develop a constructive
existence proof for the GCD using induction. Induction proofs often to hand-in-hand with
recursive programs, and sure enough, a very clean recursive program can be extracted from
the proof, and this program follows exactly the method we just came up with:

λn.letrcgcd(n) =
λm.ifn = 0thenm
else(gcd(mremn)n)
ingcd(n)

The program here is an example of currying: a function of n that results in another function
which then uses m. This isn’t necessarily intuitive, since when we think of the GCD we
think of a function of a pair (or more) of numbers, so we might expect the program to start
with something like “gcd(m,n) = . . .”. But the proof that follows uses natural induction
on a single variable and flows very nicely, giving reason to prefer the curried function here.
To develop a proof that produces a function of the pair (m,n) would require induction on
the pair itself which isn’t as intuitive or easy to understand as natural induction on a single
variable.



Chapter 4

Software Details

4.1 Installed Software

Install CLANG, LLVM

http://llvm.org/releases/download.html

Install OCAML

sudo apt-get install ocaml

An OCAML version of gcd would be written

let rec gcd a b = if b = 0 then a else gcd b (a mod b)

val gcd : int -> int -> int = <fun>

15
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Chapter 5

Temporal Logic of Actions
(TLA)

Sloppiness is easier than precision and rigor – Leslie Lamport[Lamp14a]

Leslie Lamport[Lamp14][Lamp16] on 21st Century Proofs.

A method of writing proofs is described that makes it harder to prove things that are not
true. The method, based on hierarchical structuring, is simple and practical. The author’s
twenty years of experience writing such proofs is discussed.

Lamport points out that proofs need rigor and precision. Structure and Naming are impor-
tant. Every step of the proof names the facts it uses.

Quoting from [Lamp16]:

Broadly speaking, a TLA+ proof is a collection of claims, arranged in a hierarchical structure
which we describe below, where each claim has an assertion that is either unjustified or
justified by a collection of cited facts. The purpose of TLAPS is to check the user-provided
proofs of theorems, that is, to check that the hierarchy of claims indeed establishes the truth
of the theorem if the claims were true, and then to check that the assertion of every justified
claim indeed is implied by its cited facts. If a TLA+ theorem has a proof with no unjustified
claims, then, as a result of checking the proof, TLAPS verifies the truth of the theorem.

5.1 The algorithm

The well-known Euclidean algorithm can be written in the PlusCal language as follows:

--algorithm Euclid {

variables x \in 1..M, y \in 1..N, x0 = x, y0 = y;

{

while (x # y) {

if (x < y) { y := y - x; }

else { x := x-y; }

};

assert x = GCD(x0, y0) /\ y = GCD(x0, y0)

}

The PlusCal translator translates this algorithm into a TLA+ specification that we could
prove correct. However, in this tutorial, we shall write a somewhat simpler specification of
Euclid’s algorithm directly in TLA+.

17
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Creating a new TLA+ module

In order to get the definitions of arithmetic operators (+, −, etc.), we shall make this
specification extend the Integers standard module.

--------------------- Module Euclid ----------------------

EXTENDS Integers

Definitions

We shall then define the GCD of two integers. For that purpose, let us define the predicate
“p divides q” as follows: p divides q iff there exists some integer d in the interval 1..q such
that q is equal to p times d.

p | q == \E d \in 1..q : q = p * d

We then define the set of divisors of an integer q as the sets of integers which both belong
to the interval 1..q and divide q:

Divisors(q) == {d \in 1..q : d | q}

We define the maximum of a set S as one of the elements of this set which is greater than
or equal to all the other elements:

Maximum(S) == CHOOSE x \in S : \A y \in S : x >= y

And finally, we define the GCD of two integers p and q to be the maximum of the intersection
of Divisors(p) and Divisors(a):

GCD(p,q) == Maximum(Divisors(p) \cap Divisors(q))

For convenience, we shall also define the set of all positive integers as:

Number = Nat \ {0}

Constants and variables

We then define the two constants and two variables needed to describe the Euclidean algo-
rithm, where M and N are the values whose GCD is to be computed:

CONSTANTS M, N

VARIABLES x, y

The specification

We define the initial state of the Euclidean algorithm as follows:

Init == (x = M) /\ (y = N)

In the Euclidean algorithm, two actions can be performed:

• set the value of y to y - x if x < y

• set the value of x to x - y if x > y
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These actions are again written as a definition of Next, which specifies the next-state relation.
In TLA+, a primed variable refers to its value at the next state of the algorithm.

Next == \/ /\ x < y

/\ y’ = y - x

/\ x’ = x

\/ /\ y < x

/\ x’ = x-y

/\ y’ = y

The specification of the algorithm asserts that the variables have the correct initial values
and, in each execution step, either a Next action is performed or x and y keep the same
values:

Spec == Init /\ [][Next]_<<x,y>>

(For reasons that are irrelevant to this algorithm, TLA specifications always allow stuttering
steps that leave all the variables unchanged.)

We want to prove that the algorithm always satisfies the following property:

ResultCorrect == (x = y) => x = GCD(M, N)

Hence we want to prove the following theorem named Correctness:

THEOREM Correctness == Spec => []ResultCorrect

Summary

--------------------- Module Euclid ----------------------

EXTENDS Integers

p | q == \E d \in 1..q : q = p * d

Divisors(q) == {d \in 1..q : d | q}

Maximum(S) == CHOOSE x \in S : \A y \in S : x >= y

GCD(p,q) == Maximum(Divisors(p) \cap Divisors(q))

Number == Nat \ {0}

CONSTANTS M, N

VARIABLES x, y

Init == (x = M) /\ (y = N)

Next == \/ /\ x < y

/\ y’ = y - x

/\ x’ = x

\/ /\ y < x

/\ x’ = x-y

/\ y’ = y

Spec == Init /\ [][Next]_<<x,y>>

ResultCorrect == (x = y) => x = GCD(M,N)

THEOREM Correctness == Spec => []ResultCorrect
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5.2 A simple proof

The invariant

Intuitively, the theorem Correctness holds because the implementation guarantees the fol-
lowing invariant

InductiveInvariant == /\ x \in Number

/\ y \in Number

/\ GCD(x, y) = GCD(M, N)

That is, InductiveInvariant holds for the initial state (i.e., the state specified by Init)
and is preserved by the next-state relation [Next] << x, y >>

Checking proofs

First we need to assume that constants M and N are not equal to zero

ASSUME NumberAssumption == M \in Number /\ N \in Number

Let us then prove that InductiveInvariant holds for the initial state.

THEOREM InitProperty == Init => InductiveInvariant

To check whether TLAPS can prove that theorem by itself, we declare its proof obvious.

THEOREM InitProperty == Init => InductiveInvariant

OBVIOUS

We now ask TLAPS to prove that theorem. But TLAPS does not know how to prove the
proof obligation corresponding to that proof. It prints that obligation and reports failures
to three backends, Zenon, Isabelle, and SMT. The default behavior of TLAPS is to send
obligations first to an SMT solver (by default CVC3), then if that fails to the automatic
prover Zenon, then if Zenon fails to Isabelle (with the tactic “auto”).

Using facts and definitions

The obligation cannot be proved because TLAPS treats the symbols Init and InductiveInvariant
as opaque identifiers unless it is explicitly instructed to expand their definitions using the
directive DEF. The main purpose of this treatment of definitions is to make proof-checking
tractable, because expanding definitions can arbitrarily increase the size of expressions. Ex-
plicit use of definitions is also a good hint to the (human) reader to look only at the listed
definitions to understand a proof step. In that precise case, we can ask TLAPS to expand
definitions of Init and InductiveInvariant, by replacing the proof OBVIOUS by the proof
BY DEF Init, InductiveInvariant. In the obligations sent to the backends, the definitions
of Init and InductiveInvariant have been expanded.

Unfortunately, none of the back-ends could prove that obligation. As with definitions, we
have to specify which facts are usable. In this case, we have to make the fact NumberAssumption
usable by changing the proof to

THEOREM InitProperty == Init => InductiveInvariant

BY NumberAssumption DEF Init, InductiveInvariant
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The general form of a BY proof is:

BY e1, . . . , em DEF d1, . . . , dn

which claims that the assertion follows by assuming e1, . . . , em and expanding the definitions
d1, . . . , dn. It is the job of TLAPS to then check this claim, and also to check that the cited
facts e1, . . . , em are indeed true.

Finally, SMT succeeds in proving that obligation.

--------------------- Module Euclid ----------------------

EXTENDS Integers

p | q == \E d \in 1..q : q = p * d

Divisors(q) == {d \in 1..q : d | q}

Maximum(S) == CHOOSE x \in S : \A y \in S : x >= y

GCD(p,q) == Maximum(Divisors(p) \cap Divisors(q))

Number == Nat \ {0}

CONSTANTS M, N

VARIABLES x, y

Init == (x = M) /\ (y = N)

Next == \/ /\ x < y

/\ y’ = y - x

/\ x’ = x

\/ /\ y < x

/\ x’ = x-y

/\ y’ = y

Spec == Init /\ [][Next]_<<x,y>>

ResultCorrect == (x = y) => x = GCD(M,N)

InductiveInvariant == /\ x \in Number

/\ y \in Number

/\ GCD(x, y) = GCD(M, N)

ASSUME NumberAssumption == M \in Number /\ N \in Number

THEOREM InitProperty == Init => InductiveInvariant

BY NumberAssumption DEF Init, InductiveInvariant

THEOREM Correctness == Spec => []ResultCorrect

5.3 Divisibility Definition

In Shoup[Sho08] we find the divisibility definition.

Given the integers, a and b

a divides b =⇒ az = b for some z

so or all a,b, and c
a|a, 1|a, and a|0

because a · 1 = a, 1 · a = a, and a · 0 = 0

0|a ⇐⇒ a = 0
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a|b ⇐⇒ −a|b ⇐⇒ a| − b

a|b and a|c =⇒ a|(b+ c)

a|b and b|c =⇒ a|c

a|b and b ̸= 0 =⇒ 1 ≤ |a| ≤ |b|

az = b ̸= 0 and a ̸= 0 and z ̸= 0 =⇒ |a| ≥ 1 and |z| ≥ 1

a|b and b|a =⇒ a = ±b

proof:
a|b =⇒ |a| ≤ |b|; b|a =⇒ |b| ≤ |a|; therefore |a| = |b| =⇒ a = ±b

a|1 ⇐⇒ a = ±1



Chapter 6

COQ proof of GCD

6.1 Basics of the Calculus of Constructions

Coquand[Coqu86][Wiki17] defines the Calculus of Constructions which can be considered an
extension of the Curry-Howard Isomorphism. The components are

Terms

A term in the calculus of constructions is constructed using the following rules:

• T is a term (also called Type)

• P is a term (also called Prop, the type of all propositions)

• Variables (x, y, . . .) are terms

• if A and B are terms, then so are

– (A,B)

– (λx : A,B)

– (∀x : A,B)

The calculus of constructions has five kinds of objects:

1. proofs, which are terms whose types are propositions

2. propositions, which are also known as small types

3. predicates, which are functions that return propositions

4. large types, which are the types of predicates. P is an example of a large type)

5. T itself, which is the type of large types.

Judgements

The calculus of constructions allows proving typing judgements

x1 : A1, x2 : A2, . . . ⊢ t : B

23
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which can be read as the implication

if variables x1, x2, . . . , have types A1, A2, . . . , then term t has type B

The valid judgements for the calculus of constructions are derivable from a set of inference
rules. In the following, we use Γ to mean a sequence of type assignments x1 : A1, x2 : A2, . . .,
and we use K to mean either P or T. We shall write A : B : C to mean ”A has type B, and
B has type C”. We shall write B(x := N) to mean the result of substituting the term N for
the variable x in the term B.

An inference rule is written in the form

Γ ⊢ A : B

Γ′ ⊢ C : D

which means

if Γ ⊢ A : B is a valid judgement, then so is Γ′ ⊢ C : D

Inference Rules

In Frade[Frad08] we find:

(axiom) () ⊢ s1 : s2 if (s1, s2) ∈ A

(start)
Γ ⊢ A : s

Γ, x : A ⊢ x : A
if x /∈ dom(Γ)

(weakening)
Γ ⊢M : A Γ ⊢ B : s

Γ, x : B ⊢M : A
if x /∈ dom(Γ)

(product)
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2

Γ ⊢ (
∏

x : A.B) : s3
if (s1, s2, s3) ∈ R

(application)
Γ ⊢M : (

∏
x : A.B) Γ ⊢ N : A

Γ ⊢MN : B[x := N ]

(abstraction)
Γ, x : A ⊢M : B Γ ⊢ (

∏
x : A.B) : s

Γ ⊢ λx : A.M : (
∏

x : A.B)

(conversion)
Γ ⊢M : A Γ ⊢ B : s

Γ ⊢M : B
if A =β B

Defining Logical Operators

A⇒ B ≡ ∀x : A.B (x /∈ B)
A ∧B ≡ ∀C : P.(A⇒ B ⇒ C)⇒ C
A ∨B ≡ ∀C : P.(A⇒ C)⇒ (B ⇒ C)⇒ C
¬A ≡ ∀C : P.(A⇒ C)

∃x : A.B ≡ ∀C : P.(∀x : A.(B ⇒ C))⇒ C

Defining Types

The basic data types used in computer science can be defined within the Calculus of Con-
structions:
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Booleans

∀A : P.A⇒ A⇒ A

Naturals

∀A : P.(A⇒ A)⇒ (A⇒ A)

Product A×B

A ∧B

Disjoint Union A+B

A ∨B

Note that Booleans and Naturals are defined in the same way as in Church encoding. However
additional problems raise from propositional extensionality and proof irrelevance.

6.2 Why does COQ have Prop?

From a stackexchange post[Stac17] we find the question:

”Coq has a type Prop of proof irrelevant propositions which are discarded during extraction.
What are the reasons for having this if we use Coq only for proofs? Prop is impredica-
tive, however, Coq automatically infers universe indexes and we can use Type(i) instead
everywhere. It seems Prop complicates everything a lot.”

Prop is very useful for program extraction because it allows us to delete parts of code that
are useless. For example, to extract a sorting algorithm we would prove the statement “for
every list l there is a list k such that k is ordered and k is a permutation of l”. If we write
this down in Coq and extract without using Prop, we will get:

1. “for all l there is a k” which gives us a map sort which takes lists to lists,

2. “such that k is ordered” will give a function verify which runs through k and checks
that it is sorted, and

3. “k is a permutation of l will give a permutation p1 which takes l to k. Note that p1
is not just a mapping, but also the inverse mapping together with programs verifying
that the two maps really are inverses.

While the extra stuff is not totally useless, in many applications we want to get ride of it
and keep just sort. This can be accomplished if we use Prop to state “k is ordered” and “k
is a permutation of l”, but not “for all l there is k”.

In general, a common way to extract code is to consider a statement of the form

∀x : A.∃y : B.ϕ(x, y)

where x is input, y is output, and ϕ(x, y) explains what it means for y to be a correct output.
(In the above example A and B are the types of lists and ϕ(l, k) is ”k is ordered and k is
a permutation of l.”) if ϕ is in Prop then extraction gives a map f : A ⇒ B such that
ϕ(x, f(x)) holds for all x ∈ A. If ϕ is in Set then we also get a function g such that g(x) is
the proof that ϕ(x, f(x)) holds, for all x ∈ A. Often the proof is computationally useless and
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we prefer to get rid of it, especially when it is nested deeply inside some other statement.
Prop gives use the possibility to do so.

There is a question whether we could avoid Prop altogether by automatically optimizing away
“useless extracted code”. To some extent we can do that, for instance all code extracted
from the negative fragment of logic (stuff build from the empty type, unit type, products)
is useless as it just shuffles around the unit. But there are genuine design decisions one has
to make when using Prop. Here is a simple example, where

∑
means that we are in Type

and ∃ means we are in Prop. If we extract from∏
n:N

∑
b:[0,1]

∑
k:N

n = 2 · k + b

we will get an inductivea program which decomposes n into its lowest bit b and the remaining
bits k, i.e., it computes everything. If we extract from∏

n:N

∑
b:[0,1]
∃
k:N

n = 2 · k + b

then the program will only compute the lowest bit b. The machine cannot tell which is the
correct one, the user has to tell it what he wants.

6.3 Source code of COQ GCD Proof

This is the proof of GCD[Coqu16a] in the COQ[Coqu16] sources:

Library Coq.ZArith.Znumtheory

Require Import ZArith_base.

Require Import ZArithRing.

Require Import Zcomplements.

Require Import Zdiv.

Require Import Wf_nat.

For compatibility reasons, this Open Scope isn’t local as it should

Open Scope Z_scope.

This file contains some notions of number theory upon Z numbers:

a divisibility predicate Z.divide

a gcd predicate gcd

Euclid algorithm euclid

a relatively prime predicate rel_prime

a prime predicate prime

properties of the efficient Z.gcd function

Notation Zgcd := Z.gcd (compat "8.3").

Notation Zggcd := Z.ggcd (compat "8.3").

Notation Zggcd_gcd := Z.ggcd_gcd (compat "8.3").

Notation Zggcd_correct_divisors := Z.ggcd_correct_divisors (compat "8.3").

Notation Zgcd_divide_l := Z.gcd_divide_l (compat "8.3").

Notation Zgcd_divide_r := Z.gcd_divide_r (compat "8.3").

Notation Zgcd_greatest := Z.gcd_greatest (compat "8.3").

Notation Zgcd_nonneg := Z.gcd_nonneg (compat "8.3").

Notation Zggcd_opp := Z.ggcd_opp (compat "8.3").
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The former specialized inductive predicate Z.divide is now a generic existential predicate.

Notation Zdivide := Z.divide (compat "8.3").

Its former constructor is now a pseudo-constructor.

Definition Zdivide_intro a b q (H:b=q*a) : Z.divide a b := ex_intro _ q H.

Results concerning divisibility

Notation Zdivide_refl := Z.divide_refl (compat "8.3").

Notation Zone_divide := Z.divide_1_l (compat "8.3").

Notation Zdivide_0 := Z.divide_0_r (compat "8.3").

Notation Zmult_divide_compat_l := Z.mul_divide_mono_l (compat "8.3").

Notation Zmult_divide_compat_r := Z.mul_divide_mono_r (compat "8.3").

Notation Zdivide_plus_r := Z.divide_add_r (compat "8.3").

Notation Zdivide_minus_l := Z.divide_sub_r (compat "8.3").

Notation Zdivide_mult_l := Z.divide_mul_l (compat "8.3").

Notation Zdivide_mult_r := Z.divide_mul_r (compat "8.3").

Notation Zdivide_factor_r := Z.divide_factor_l (compat "8.3").

Notation Zdivide_factor_l := Z.divide_factor_r (compat "8.3").

Lemma Zdivide_opp_r a b : (a | b) -> (a | - b).

Lemma Zdivide_opp_r_rev a b : (a | - b) -> (a | b).

Lemma Zdivide_opp_l a b : (a | b) -> (- a | b).

Lemma Zdivide_opp_l_rev a b : (- a | b) -> (a | b).

Theorem Zdivide_Zabs_l a b : (Z.abs a | b) -> (a | b).

Theorem Zdivide_Zabs_inv_l a b : (a | b) -> (Z.abs a | b).

Hint Resolve Z.divide_refl Z.divide_1_l Z.divide_0_r: zarith.

Hint Resolve Z.mul_divide_mono_l Z.mul_divide_mono_r: zarith.

Hint Resolve Z.divide_add_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l

Zdivide_opp_l_rev Z.divide_sub_r Z.divide_mul_l Z.divide_mul_r

Z.divide_factor_l Z.divide_factor_r: zarith.

Auxiliary result.

Lemma Zmult_one x y : x >= 0 -> x * y = 1 -> x = 1.

Only 1 and -1 divide 1.

Notation Zdivide_1 := Z.divide_1_r (compat "8.3").

If a divides b and b divides a then a is b or -b.

Notation Zdivide_antisym := Z.divide_antisym (compat "8.3").

Notation Zdivide_trans := Z.divide_trans (compat "8.3").

If a divides b and b<>0 then |a| <= |b|.

Lemma Zdivide_bounds a b : (a | b) -> b <> 0 -> Z.abs a <= Z.abs b.

Z.divide can be expressed using Z.modulo.
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Lemma Zmod_divide : forall a b, b<>0 -> a mod b = 0 -> (b | a).

Lemma Zdivide_mod : forall a b, (b | a) -> a mod b = 0.

Z.divide is hence decidable

Lemma Zdivide_dec a b : {(a | b)} + {~ (a | b)}.

Theorem Zdivide_Zdiv_eq a b : 0 < a -> (a | b) -> b = a * (b / a).

Theorem Zdivide_Zdiv_eq_2 a b c :

0 < a -> (a | b) -> (c * b) / a = c * (b / a).

Theorem Zdivide_le: forall a b : Z,

0 <= a -> 0 < b -> (a | b) -> a <= b.

Theorem Zdivide_Zdiv_lt_pos a b :

1 < a -> 0 < b -> (a | b) -> 0 < b / a < b .

Lemma Zmod_div_mod n m a:

0 < n -> 0 < m -> (n | m) -> a mod n = (a mod m) mod n.

Lemma Zmod_divide_minus a b c:

0 < b -> a mod b = c -> (b | a - c).

Lemma Zdivide_mod_minus a b c:

0 <= c < b -> (b | a - c) -> a mod b = c.

Greatest common divisor (gcd).

There is no unicity of the gcd; hence we define the predicate Zis_gcd a b g expressing that g is a gcd of a and b. (We show later that the gcd is actually unique if we discard its sign.)

Inductive Zis_gcd (a b g:Z) : Prop :=

Zis_gcd_intro :

(g | a) ->

(g | b) ->

(forall x, (x | a) -> (x | b) -> (x | g)) ->

Zis_gcd a b g.

Trivial properties of gcd

Lemma Zis_gcd_sym : forall a b d, Zis_gcd a b d -> Zis_gcd b a d.

Lemma Zis_gcd_0 : forall a, Zis_gcd a 0 a.

Lemma Zis_gcd_1 : forall a, Zis_gcd a 1 1.

Lemma Zis_gcd_refl : forall a, Zis_gcd a a a.

Lemma Zis_gcd_minus : forall a b d, Zis_gcd a (- b) d -> Zis_gcd b a d.

Lemma Zis_gcd_opp : forall a b d, Zis_gcd a b d -> Zis_gcd b a (- d).

Lemma Zis_gcd_0_abs a : Zis_gcd 0 a (Z.abs a).

Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith.

Theorem Zis_gcd_unique: forall a b c d : Z,

Zis_gcd a b c -> Zis_gcd a b d -> c = d \/ c = (- d).
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Extended Euclid algorithm.

Euclid’s algorithm to compute the gcd mainly relies on the following property.

Lemma Zis_gcd_for_euclid :

forall a b d q:Z, Zis_gcd b (a - q * b) d -> Zis_gcd a b d.

Lemma Zis_gcd_for_euclid2 :

forall b d q r:Z, Zis_gcd r b d -> Zis_gcd b (b * q + r) d.

We implement the extended version of Euclid’s algorithm, i.e. the one computing Bezout’s coefficients as it computes the gcd. We follow the algorithm given in Knuth’s "Art of Computer Programming", vol 2, page 325.

Section extended_euclid_algorithm.

Variables a b : Z.

The specification of Euclid’s algorithm is the existence of u, v and d such that ua+vb=d and (gcd a b d).

Inductive Euclid : Set :=

Euclid_intro :

forall u v d:Z, u * a + v * b = d -> Zis_gcd a b d -> Euclid.

The recursive part of Euclid’s algorithm uses well-founded recursion of non-negative integers. It maintains 6 integers u1,u2,u3,v1,v2,v3 such that the following invariant holds: u1*a+u2*b=u3 and v1*a+v2*b=v3 and gcd(u3,v3)=gcd(a,b).

Lemma euclid_rec :

forall v3:Z,

0 <= v3 ->

forall u1 u2 u3 v1 v2:Z,

u1 * a + u2 * b = u3 ->

v1 * a + v2 * b = v3 ->

(forall d:Z, Zis_gcd u3 v3 d -> Zis_gcd a b d) -> Euclid.

We get Euclid’s algorithm by applying euclid_rec on 1,0,a,0,1,b when b>=0 and 1,0,a,0,-1,-b when b<0.

Lemma euclid : Euclid.

End extended_euclid_algorithm.

Theorem Zis_gcd_uniqueness_apart_sign :

forall a b d d’:Z, Zis_gcd a b d -> Zis_gcd a b d’ -> d = d’ \/ d = - d’.

Bezout’s coefficients

Inductive Bezout (a b d:Z) : Prop :=

Bezout_intro : forall u v:Z, u * a + v * b = d -> Bezout a b d.

Existence of Bezout’s coefficients for the gcd of a and b

Lemma Zis_gcd_bezout : forall a b d:Z, Zis_gcd a b d -> Bezout a b d.

gcd of ca and cb is c gcd(a,b).

Lemma Zis_gcd_mult :

forall a b c d:Z, Zis_gcd a b d -> Zis_gcd (c * a) (c * b) (c * d).

Relative primality

Definition rel_prime (a b:Z) : Prop := Zis_gcd a b 1.
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Bezout’s theorem: a and b are relatively prime if and only if there exist u and v such that ua+vb = 1.

Lemma rel_prime_bezout : forall a b:Z, rel_prime a b -> Bezout a b 1.

Lemma bezout_rel_prime : forall a b:Z, Bezout a b 1 -> rel_prime a b.

Gauss’s theorem: if a divides bc and if a and b are relatively prime, then a divides c.

Theorem Gauss : forall a b c:Z, (a | b * c) -> rel_prime a b -> (a | c).

If a is relatively prime to b and c, then it is to bc

Lemma rel_prime_mult :

forall a b c:Z, rel_prime a b -> rel_prime a c -> rel_prime a (b * c).

Lemma rel_prime_cross_prod :

forall a b c d:Z,

rel_prime a b ->

rel_prime c d -> b > 0 -> d > 0 -> a * d = b * c -> a = c /\ b = d.

After factorization by a gcd, the original numbers are relatively prime.

Lemma Zis_gcd_rel_prime :

forall a b g:Z,

b > 0 -> g >= 0 -> Zis_gcd a b g -> rel_prime (a / g) (b / g).

Theorem rel_prime_sym: forall a b, rel_prime a b -> rel_prime b a.

Theorem rel_prime_div: forall p q r,

rel_prime p q -> (r | p) -> rel_prime r q.

Theorem rel_prime_1: forall n, rel_prime 1 n.

Theorem not_rel_prime_0: forall n, 1 < n -> ~ rel_prime 0 n.

Theorem rel_prime_mod: forall p q, 0 < q ->

rel_prime p q -> rel_prime (p mod q) q.

Theorem rel_prime_mod_rev: forall p q, 0 < q ->

rel_prime (p mod q) q -> rel_prime p q.

Theorem Zrel_prime_neq_mod_0: forall a b, 1 < b -> rel_prime a b -> a mod b <> 0.

Primality

Inductive prime (p:Z) : Prop :=

prime_intro :

1 < p -> (forall n:Z, 1 <= n < p -> rel_prime n p) -> prime p.

The sole divisors of a prime number p are -1, 1, p and -p.

Lemma prime_divisors :

forall p:Z,

prime p -> forall a:Z, (a | p) -> a = -1 \/ a = 1 \/ a = p \/ a = - p.

A prime number is relatively prime with any number it does not divide

Lemma prime_rel_prime :

forall p:Z, prime p -> forall a:Z, ~ (p | a) -> rel_prime p a.
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Hint Resolve prime_rel_prime: zarith.

As a consequence, a prime number is relatively prime with smaller numbers

Theorem rel_prime_le_prime:

forall a p, prime p -> 1 <= a < p -> rel_prime a p.

If a prime p divides ab then it divides either a or b

Lemma prime_mult :

forall p:Z, prime p -> forall a b:Z, (p | a * b) -> (p | a) \/ (p | b).

Lemma not_prime_0: ~ prime 0.

Lemma not_prime_1: ~ prime 1.

Lemma prime_2: prime 2.

Theorem prime_3: prime 3.

Theorem prime_ge_2 p : prime p -> 2 <= p.

Definition prime’ p := 1<p /\ (forall n, 1<n<p -> ~ (n|p)).

Lemma Z_0_1_more x : 0<=x -> x=0 \/ x=1 \/ 1<x.

Theorem prime_alt p : prime’ p <-> prime p.

Theorem square_not_prime: forall a, ~ prime (a * a).

Theorem prime_div_prime: forall p q,

prime p -> prime q -> (p | q) -> p = q.

we now prove that Z.gcd is indeed a gcd in the sense of Zis_gcd.

Notation Zgcd_is_pos := Z.gcd_nonneg (compat "8.3").

Lemma Zgcd_is_gcd : forall a b, Zis_gcd a b (Z.gcd a b).

Theorem Zgcd_spec : forall x y : Z, {z : Z | Zis_gcd x y z /\ 0 <= z}.

Theorem Zdivide_Zgcd: forall p q r : Z,

(p | q) -> (p | r) -> (p | Z.gcd q r).

Theorem Zis_gcd_gcd: forall a b c : Z,

0 <= c -> Zis_gcd a b c -> Z.gcd a b = c.

Notation Zgcd_inv_0_l := Z.gcd_eq_0_l (compat "8.3").

Notation Zgcd_inv_0_r := Z.gcd_eq_0_r (compat "8.3").

Theorem Zgcd_div_swap0 : forall a b : Z,

0 < Z.gcd a b ->

0 < b ->

(a / Z.gcd a b) * b = a * (b/Z.gcd a b).

Theorem Zgcd_div_swap : forall a b c : Z,

0 < Z.gcd a b ->

0 < b ->
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(c * a) / Z.gcd a b * b = c * a * (b/Z.gcd a b).

Notation Zgcd_comm := Z.gcd_comm (compat "8.3").

Lemma Zgcd_ass a b c : Z.gcd (Z.gcd a b) c = Z.gcd a (Z.gcd b c).

Notation Zgcd_Zabs := Z.gcd_abs_l (compat "8.3").

Notation Zgcd_0 := Z.gcd_0_r (compat "8.3").

Notation Zgcd_1 := Z.gcd_1_r (compat "8.3").

Hint Resolve Z.gcd_0_r Z.gcd_1_r : zarith.

Theorem Zgcd_1_rel_prime : forall a b,

Z.gcd a b = 1 <-> rel_prime a b.

Definition rel_prime_dec: forall a b,

{ rel_prime a b }+{ ~ rel_prime a b }.

Definition prime_dec_aux:

forall p m,

{ forall n, 1 < n < m -> rel_prime n p } +

{ exists n, 1 < n < m /\ ~ rel_prime n p }.

Definition prime_dec: forall p, { prime p }+{ ~ prime p }.

Theorem not_prime_divide:

forall p, 1 < p -> ~ prime p -> exists n, 1 < n < p /\ (n | p).



Chapter 7

LEAN proof of GCD

This is the proof of GCD[Avig14] in the LEAN[Avig16] sources:

/-

Copyright (c) 2014 Jeremy Avigad. All rights reserved.

Released under Apache 2.0 license as described in the file LICENSE.

Authors: Jeremy Avigad, Leonardo de Moura

Definitions and properties of gcd, lcm, and coprime.

-/

import .div

open eq.ops well_founded decidable prod

namespace nat

/- gcd -/

private definition pair_nat.lt : nat nat nat nat Prop := measure pr

private definition pair_nat.lt.wf : well_founded pair_nat.lt :=

intro_k (measure.wf pr) 20 -- we use intro_k to be able to execute gcd efficiently in the kernel

local attribute pair_nat.lt.wf [instance] -- instance will not be saved in .olean

local infixl ‘ ‘:50 := pair_nat.lt

private definition gcd.lt.dec (x y : nat) : (succ y, x % succ y) (x, succ y) :=

!mod_lt (succ_pos y)

definition gcd.F : (p : nat nat), ( p : nat nat, p p nat) nat

| (x, 0) f := x

| (x, succ y) f := f (succ y, x % succ y) !gcd.lt.dec

definition gcd (x y : nat) := fix gcd.F (x, y)

theorem gcd_zero_right [simp] (x : nat) : gcd x 0 = x := rfl

theorem gcd_succ [simp] (x y : nat) : gcd x (succ y) = gcd (succ y) (x % succ y) :=

well_founded.fix_eq gcd.F (x, succ y)

theorem gcd_one_right (n : ) : gcd n 1 = 1 :=

calc gcd n 1 = gcd 1 (n % 1) : gcd_succ

... = gcd 1 0 : mod_one

theorem gcd_def (x : ) : (y : ), gcd x y = if y = 0 then x else gcd y (x % y)

33



34 CHAPTER 7. LEAN PROOF OF GCD

| 0 := !gcd_zero_right

| (succ y) := !gcd_succ (if_neg !succ_ne_zero)

theorem gcd_self : (n : ), gcd n n = n

| 0 := rfl

| (succ n) := calc

gcd (succ n) (succ n) = gcd (succ n) (succ n % succ n) : gcd_succ

... = gcd (succ n) 0 : mod_self

theorem gcd_zero_left : (n : ), gcd 0 n = n

| 0 := rfl

| (succ n) := calc

gcd 0 (succ n) = gcd (succ n) (0 % succ n) : gcd_succ

... = gcd (succ n) 0 : zero_mod

theorem gcd_of_pos (m : ) {n : } (H : n > 0) : gcd m n = gcd n (m % n) :=

gcd_def m n if_neg (ne_zero_of_pos H)

theorem gcd_rec (m n : ) : gcd m n = gcd n (m % n) :=

by_cases_zero_pos n

(calc

m = gcd 0 m : gcd_zero_left

... = gcd 0 (m % 0) : mod_zero)

(take n, assume H : 0 < n, gcd_of_pos m H)

theorem gcd.induction {P : Prop}

(m n : )

(H0 : m, P m 0)

(H1 : m n, 0 < n P n (m % n) P m n) :

P m n :=

induction (m, n) (prod.rec (m, nat.rec ( IH, H0 m)

( n v (IH : p, p (m, succ n) P (pr p) (pr p)),

H1 m (succ n) !succ_pos (IH _ !gcd.lt.dec))))

theorem gcd_dvd (m n : ) : (gcd m n m) (gcd m n n) :=

gcd.induction m n

(take m, and.intro (!one_mul !dvd_mul_left) !dvd_zero)

(take m n (npos : 0 < n), and.rec

(assume (IH : gcd n (m % n) n) (IH : gcd n (m % n) (m % n)),

have H : (gcd n (m % n) (m / n * n + m % n)), from

dvd_add (dvd.trans IH !dvd_mul_left) IH,

have H1 : (gcd n (m % n) m), from !eq_div_mul_add_mod H,

show (gcd m n m) (gcd m n n), from !gcd_rec (and.intro H1 IH)))

theorem gcd_dvd_left (m n : ) : gcd m n m := and.left !gcd_dvd

theorem gcd_dvd_right (m n : ) : gcd m n n := and.right !gcd_dvd

theorem dvd_gcd {m n k : } : k m k n k gcd m n :=

gcd.induction m n (take m, imp.intro)

(take m n (npos : n > 0)

(IH : k n k m % n k gcd n (m % n))

(H1 : k m) (H2 : k n),

have H3 : k m / n * n + m % n, from !eq_div_mul_add_mod H1,

have H4 : k m % n, from nat.dvd_of_dvd_add_left H3 (dvd.trans H2 !dvd_mul_left),

!gcd_rec IH H2 H4)

theorem gcd.comm (m n : ) : gcd m n = gcd n m :=
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dvd.antisymm

(dvd_gcd !gcd_dvd_right !gcd_dvd_left)

(dvd_gcd !gcd_dvd_right !gcd_dvd_left)

theorem gcd.assoc (m n k : ) : gcd (gcd m n) k = gcd m (gcd n k) :=

dvd.antisymm

(dvd_gcd

(dvd.trans !gcd_dvd_left !gcd_dvd_left)

(dvd_gcd (dvd.trans !gcd_dvd_left !gcd_dvd_right) !gcd_dvd_right))

(dvd_gcd

(dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !gcd_dvd_left))

(dvd.trans !gcd_dvd_right !gcd_dvd_right))

theorem gcd_one_left (m : ) : gcd 1 m = 1 :=

!gcd.comm !gcd_one_right

theorem gcd_mul_left (m n k : ) : gcd (m * n) (m * k) = m * gcd n k :=

gcd.induction n k

(take n, calc gcd (m * n) (m * 0) = gcd (m * n) 0 : mul_zero)

(take n k,

assume H : 0 < k,

assume IH : gcd (m * k) (m * (n % k)) = m * gcd k (n % k),

calc

gcd (m * n) (m * k) = gcd (m * k) (m * n % (m * k)) : !gcd_rec

... = gcd (m * k) (m * (n % k)) : mul_mod_mul_left

... = m * gcd k (n % k) : IH

... = m * gcd n k : !gcd_rec)

theorem gcd_mul_right (m n k : ) : gcd (m * n) (k * n) = gcd m k * n :=

calc

gcd (m * n) (k * n) = gcd (n * m) (k * n) : mul.comm

... = gcd (n * m) (n * k) : mul.comm

... = n * gcd m k : gcd_mul_left

... = gcd m k * n : mul.comm

theorem gcd_pos_of_pos_left {m : } (n : ) (mpos : m > 0) : gcd m n > 0 :=

pos_of_dvd_of_pos !gcd_dvd_left mpos

theorem gcd_pos_of_pos_right (m : ) {n : } (npos : n > 0) : gcd m n > 0 :=

pos_of_dvd_of_pos !gcd_dvd_right npos

theorem eq_zero_of_gcd_eq_zero_left {m n : } (H : gcd m n = 0) : m = 0 :=

or.elim (eq_zero_or_pos m)

(assume H1, H1)

(assume H1 : m > 0, absurd H (ne_of_lt (!gcd_pos_of_pos_left H1)))

theorem eq_zero_of_gcd_eq_zero_right {m n : } (H : gcd m n = 0) : n = 0 :=

eq_zero_of_gcd_eq_zero_left (!gcd.comm H)

theorem gcd_div {m n k : } (H1 : k m) (H2 : k n) :

gcd (m / k) (n / k) = gcd m n / k :=

or.elim (eq_zero_or_pos k)

(assume H3 : k = 0, by subst k; rewrite *nat.div_zero)

(assume H3 : k > 0, (nat.div_eq_of_eq_mul_left H3 (calc

gcd m n = gcd m (n / k * k) : nat.div_mul_cancel H2

... = gcd (m / k * k) (n / k * k) : nat.div_mul_cancel H1

... = gcd (m / k) (n / k) * k : gcd_mul_right)))

theorem gcd_dvd_gcd_mul_left (m n k : ) : gcd m n gcd (k * m) n :=
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dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right

theorem gcd_dvd_gcd_mul_right (m n k : ) : gcd m n gcd (m * k) n :=

!mul.comm !gcd_dvd_gcd_mul_left

theorem gcd_dvd_gcd_mul_left_right (m n k : ) : gcd m n gcd m (k * n) :=

dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !dvd_mul_left)

theorem gcd_dvd_gcd_mul_right_right (m n k : ) : gcd m n gcd m (n * k) :=

!mul.comm !gcd_dvd_gcd_mul_left_right

/- lcm -/

definition lcm (m n : ) : := m * n / (gcd m n)

theorem lcm.comm (m n : ) : lcm m n = lcm n m :=

calc

lcm m n = m * n / gcd m n : rfl

... = n * m / gcd m n : mul.comm

... = n * m / gcd n m : gcd.comm

... = lcm n m : rfl

theorem lcm_zero_left (m : ) : lcm 0 m = 0 :=

calc

lcm 0 m = 0 * m / gcd 0 m : rfl

... = 0 / gcd 0 m : zero_mul

... = 0 : nat.zero_div

theorem lcm_zero_right (m : ) : lcm m 0 = 0 := !lcm.comm !lcm_zero_left

theorem lcm_one_left (m : ) : lcm 1 m = m :=

calc

lcm 1 m = 1 * m / gcd 1 m : rfl

... = m / gcd 1 m : one_mul

... = m / 1 : gcd_one_left

... = m : nat.div_one

theorem lcm_one_right (m : ) : lcm m 1 = m := !lcm.comm !lcm_one_left

theorem lcm_self (m : ) : lcm m m = m :=

have H : m * m / m = m, from

by_cases_zero_pos m !nat.div_zero (take m, assume H1 : m > 0, !nat.mul_div_cancel H1),

calc

lcm m m = m * m / gcd m m : rfl

... = m * m / m : gcd_self

... = m : H

theorem dvd_lcm_left (m n : ) : m lcm m n :=

have H : lcm m n = m * (n / gcd m n), from nat.mul_div_assoc _ !gcd_dvd_right,

dvd.intro H

theorem dvd_lcm_right (m n : ) : n lcm m n :=

!lcm.comm !dvd_lcm_left

theorem gcd_mul_lcm (m n : ) : gcd m n * lcm m n = m * n :=

eq.symm (nat.eq_mul_of_div_eq_right (dvd.trans !gcd_dvd_left !dvd_mul_right) rfl)

theorem lcm_dvd {m n k : } (H1 : m k) (H2 : n k) : lcm m n k :=

or.elim (eq_zero_or_pos k)
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(assume kzero : k = 0, !kzero !dvd_zero)

(assume kpos : k > 0,

have mpos : m > 0, from pos_of_dvd_of_pos H1 kpos,

have npos : n > 0, from pos_of_dvd_of_pos H2 kpos,

have gcd_pos : gcd m n > 0, from !gcd_pos_of_pos_left mpos,

obtain p (km : k = m * p), from exists_eq_mul_right_of_dvd H1,

obtain q (kn : k = n * q), from exists_eq_mul_right_of_dvd H2,

have ppos : p > 0, from pos_of_mul_pos_left (km kpos),

have qpos : q > 0, from pos_of_mul_pos_left (kn kpos),

have H3 : p * q * (m * n * gcd p q) = p * q * (gcd m n * k), from

calc

p * q * (m * n * gcd p q)

= m * p * (n * q * gcd p q) : by rewrite [*mul.assoc, *mul.left_comm q,

mul.left_comm p]

... = k * (k * gcd p q) : by rewrite [-kn, -km]

... = k * gcd (k * p) (k * q) : by rewrite gcd_mul_left

... = k * gcd (n * q * p) (m * p * q) : by rewrite [-kn, -km]

... = k * (gcd n m * (p * q)) : by rewrite [*mul.assoc, mul.comm q, gcd_mul_right]

... = p * q * (gcd m n * k) : by rewrite [mul.comm, mul.comm (gcd n m), gcd.comm,

*mul.assoc],

have H4 : m * n * gcd p q = gcd m n * k,

from !eq_of_mul_eq_mul_left (mul_pos ppos qpos) H3,

have H5 : gcd m n * (lcm m n * gcd p q) = gcd m n * k,

from !mul.assoc !gcd_mul_lcm H4,

have H6 : lcm m n * gcd p q = k,

from !eq_of_mul_eq_mul_left gcd_pos H5,

dvd.intro H6)

theorem lcm.assoc (m n k : ) : lcm (lcm m n) k = lcm m (lcm n k) :=

dvd.antisymm

(lcm_dvd

(lcm_dvd !dvd_lcm_left (dvd.trans !dvd_lcm_left !dvd_lcm_right))

(dvd.trans !dvd_lcm_right !dvd_lcm_right))

(lcm_dvd

(dvd.trans !dvd_lcm_left !dvd_lcm_left)

(lcm_dvd (dvd.trans !dvd_lcm_right !dvd_lcm_left) !dvd_lcm_right))

/- coprime -/

definition coprime [reducible] (m n : ) : Prop := gcd m n = 1

lemma gcd_eq_one_of_coprime {m n : } : coprime m n gcd m n = 1 :=

h, h

theorem coprime_swap {m n : } (H : coprime n m) : coprime m n :=

!gcd.comm H

theorem dvd_of_coprime_of_dvd_mul_right {m n k : } (H1 : coprime k n) (H2 : k m * n) : k m :=

have H3 : gcd (m * k) (m * n) = m, from

calc

gcd (m * k) (m * n) = m * gcd k n : gcd_mul_left

... = m * 1 : H1

... = m : mul_one,

have H4 : (k gcd (m * k) (m * n)), from dvd_gcd !dvd_mul_left H2,

H3 H4

theorem dvd_of_coprime_of_dvd_mul_left {m n k : } (H1 : coprime k m) (H2 : k m * n) : k n :=

dvd_of_coprime_of_dvd_mul_right H1 (!mul.comm H2)
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theorem gcd_mul_left_cancel_of_coprime {k : } (m : ) {n : } (H : coprime k n) :

gcd (k * m) n = gcd m n :=

have H1 : coprime (gcd (k * m) n) k, from

calc

gcd (gcd (k * m) n) k

= gcd (k * gcd 1 m) n : by rewrite [-gcd_mul_left, mul_one, gcd.comm, gcd.assoc]

... = 1 : by rewrite [gcd_one_left, mul_one, coprime at H, H],

dvd.antisymm

(dvd_gcd (dvd_of_coprime_of_dvd_mul_left H1 !gcd_dvd_left) !gcd_dvd_right)

(dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right)

theorem gcd_mul_right_cancel_of_coprime (m : ) {k n : } (H : coprime k n) :

gcd (m * k) n = gcd m n :=

!mul.comm !gcd_mul_left_cancel_of_coprime H

theorem gcd_mul_left_cancel_of_coprime_right {k m : } (n : ) (H : coprime k m) :

gcd m (k * n) = gcd m n :=

!gcd.comm !gcd.comm !gcd_mul_left_cancel_of_coprime H

theorem gcd_mul_right_cancel_of_coprime_right {k m : } (n : ) (H : coprime k m) :

gcd m (n * k) = gcd m n :=

!gcd.comm !gcd.comm !gcd_mul_right_cancel_of_coprime H

theorem coprime_div_gcd_div_gcd {m n : } (H : gcd m n > 0) :

coprime (m / gcd m n) (n / gcd m n) :=

calc

gcd (m / gcd m n) (n / gcd m n) = gcd m n / gcd m n : gcd_div !gcd_dvd_left !gcd_dvd_right

... = 1 : nat.div_self H

theorem not_coprime_of_dvd_of_dvd {m n d : } (dgt1 : d > 1) (Hm : d m) (Hn : d n) :

coprime m n :=

assume co : coprime m n,

have d gcd m n, from dvd_gcd Hm Hn,

have d 1, by rewrite [coprime at co, co at this]; apply this,

have d 1, from le_of_dvd dec_trivial this,

show false, from not_lt_of_ge ‘d 1‘ ‘d > 1‘

theorem exists_coprime {m n : } (H : gcd m n > 0) :

exists m’ n’, coprime m’ n’ m = m’ * gcd m n n = n’ * gcd m n :=

have H1 : m = (m / gcd m n) * gcd m n, from (nat.div_mul_cancel !gcd_dvd_left),

have H2 : n = (n / gcd m n) * gcd m n, from (nat.div_mul_cancel !gcd_dvd_right),

exists.intro _ (exists.intro _ (and.intro (coprime_div_gcd_div_gcd H) (and.intro H1 H2)))

theorem coprime_mul {m n k : } (H1 : coprime m k) (H2 : coprime n k) : coprime (m * n) k :=

calc

gcd (m * n) k = gcd n k : !gcd_mul_left_cancel_of_coprime H1

... = 1 : H2

theorem coprime_mul_right {k m n : } (H1 : coprime k m) (H2 : coprime k n) : coprime k (m * n) :=

coprime_swap (coprime_mul (coprime_swap H1) (coprime_swap H2))

theorem coprime_of_coprime_mul_left {k m n : } (H : coprime (k * m) n) : coprime m n :=

have H1 : (gcd m n gcd (k * m) n), from !gcd_dvd_gcd_mul_left,

eq_one_of_dvd_one (H H1)

theorem coprime_of_coprime_mul_right {k m n : } (H : coprime (m * k) n) : coprime m n :=

coprime_of_coprime_mul_left (!mul.comm H)

theorem coprime_of_coprime_mul_left_right {k m n : } (H : coprime m (k * n)) : coprime m n :=
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coprime_swap (coprime_of_coprime_mul_left (coprime_swap H))

theorem coprime_of_coprime_mul_right_right {k m n : } (H : coprime m (n * k)) : coprime m n :=

coprime_of_coprime_mul_left_right (!mul.comm H)

theorem comprime_one_left : n, coprime 1 n :=

n, !gcd_one_left

theorem comprime_one_right : n, coprime n 1 :=

n, !gcd_one_right

theorem exists_eq_prod_and_dvd_and_dvd {m n k : nat} (H : k m * n) :

m’ n’, k = m’ * n’ m’ m n’ n :=

or.elim (eq_zero_or_pos (gcd k m))

(assume H1 : gcd k m = 0,

have H2 : k = 0, from eq_zero_of_gcd_eq_zero_left H1,

have H3 : m = 0, from eq_zero_of_gcd_eq_zero_right H1,

have H4 : k = 0 * n, from H2 !zero_mul,

have H5 : 0 m, from H3 !dvd.refl,

have H6 : n n, from !dvd.refl,

exists.intro _ (exists.intro _ (and.intro H4 (and.intro H5 H6))))

(assume H1 : gcd k m > 0,

have H2 : gcd k m k, from !gcd_dvd_left,

have H3 : k / gcd k m (m * n) / gcd k m, from nat.div_dvd_div H2 H,

have H4 : (m * n) / gcd k m = (m / gcd k m) * n, from

calc

m * n / gcd k m = n * m / gcd k m : mul.comm

... = n * (m / gcd k m) : !nat.mul_div_assoc !gcd_dvd_right

... = m / gcd k m * n : mul.comm,

have H5 : k / gcd k m (m / gcd k m) * n, from H4 H3,

have H6 : coprime (k / gcd k m) (m / gcd k m), from coprime_div_gcd_div_gcd H1,

have H7 : k / gcd k m n, from dvd_of_coprime_of_dvd_mul_left H6 H5,

have H8 : k = gcd k m * (k / gcd k m), from (nat.mul_div_cancel’ H2),

exists.intro _ (exists.intro _ (and.intro H8 (and.intro !gcd_dvd_right H7))))

end nat
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Chapter 8

Formal Pre- and Post-conditions

In Boldo[Bold11] we find an effort to verify floating point software using preconditions,
postconditions, and assertions. Quoting:

“These conjectures can be described formally by annotations as follows.

/*@ requires \abs(x) <= 0x1p-5;

@ ensures \abs(\result - \cos(x)) <= 0x1p-23;

@*/

float my_cosine(float x) {

//@ assert \abs(1.0 - x*x*0.5 - \cos(x)) < 0x1p-24;

return 1.0f - x * x * 0.5f;

}

The precondition, introduced by requires, states that we expect argument x in the interval
[-1/32; 1/32]. The postcondition, introduced by ensures, states that the distance between
the value returned by the function, denoted by the keyword \result, and the model of the
program, which is here the true mathematical cosine function denoted by \cos in ACSL, is
not greater than 2−23. It is important to notice that in annotations the operators like + or
∗ denote operations on real numbers and not on floating-point numbers. In particular, there
is no rounding error and no overflow in annotations, unlike in the early Leavens’ proposal.
The C variables of type float, like x and \result in this example, are interpreted as the
real number they represent. Thus, the last annotation, given as an assertion inside the code,
is a way to make explicit the reasoning we made above, making the total error the sum of
the method error and the rounding error: it states that the method error is less than 2−24.
Again, it is thanks to the choice of having exact operations in the annotations that we are
able to state a property of the method error.”

In Boldo[Bold07, Bold07a] we find ’search in an array’ annotated:

/*@ requires \valid_range(t,0,n-1)

@ ensures

@ (0 <= \result < n => t[\result] == v) &&

@ (\result == n =>

@ \forall int i; 0 <= i < n => t[i] != v) */

int index(int t[], int n, int v) {

int i = 0;

/*@ invariant 0 <= i &&

@ \forall int k; 0 <= k <i => t[k] != v

@ variant n - i */

while (i < n) {

if (t[i] == v) break;

i++;
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}

return i;

}



Chapter 9

Types and Signatures

We need to start from a base of the existing types in Common Lisp, eventually providing
Axiom combinations or specializations. Common Lisp has these standard type specifier
symbols.

Common Lisp Type Hierarchy[Pfei12]
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Axiom adds these types:

• Command = String



Chapter 10

COQ nat vs Axiom NNI

COQ’s nat domain includes a proof of GCD.

We would like to show an isomorphism between types in Coq and types in Axiom. Having
such an isomorphism will make lemmas available and simplify future proofs.

Note that Coq’s nat domain stops at O (a symbolic 0) as does Axiom’s NNI. The Axiom
interpreter will promote a subtraction to Integer whereas Coq will not.

COQ’s nat domain[COQnat] is

Library Coq.Init.Nat

Require Import Notations Logic Datatypes.

Local Open Scope nat_scope.

Peano natural numbers, definitions of operations

This file is meant to be used as a whole module, without importing it, leading to qualified
definitions (e.g. Nat.pred)

Definition t := nat.

Constants

Definition zero := 0.

Definition one := 1.

Definition two := 2.

Basic operations

Definition succ := S.

Definition pred n :=

match n with

| 0 => n

| S u => u

end.

Fixpoint add n m :=

match n with
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| 0 => m

| S p => S (p + m)

end

where "n + m" := (add n m) : nat_scope.

Definition double n := n + n.

Fixpoint mul n m :=

match n with

| 0 => 0

| S p => m + p * m

end

where "n * m" := (mul n m) : nat_scope.

Note that Axiom’s NNI domain will be automatically promoted to Integer when the sub-
traction result is negative. Coq returns O when this occurs.

Truncated subtraction: n-m is 0 if n<=m

Fixpoint sub n m :=

match n, m with

| S k, S l => k - l

| _, _ => n

end

where "n - m" := (sub n m) : nat_scope.

Comparisons

Fixpoint eqb n m : bool :=

match n, m with

| 0, 0 => true

| 0, S _ => false

| S _, 0 => false

| S n’, S m’ => eqb n’ m’

end.

Fixpoint leb n m : bool :=

match n, m with

| 0, _ => true

| _, 0 => false

| S n’, S m’ => leb n’ m’

end.

Definition ltb n m := leb (S n) m.

Infix "=?" := eqb (at level 70) : nat_scope.

Infix "<=?" := leb (at level 70) : nat_scope.

Infix "<?" := ltb (at level 70) : nat_scope.

Fixpoint compare n m : comparison :=

match n, m with

| 0, 0 => Eq

| 0, S _ => Lt



47

| S _, 0 => Gt

| S n’, S m’ => compare n’ m’

end.

Infix "?=" := compare (at level 70) : nat_scope.

Minimum, maximum

Fixpoint max n m :=

match n, m with

| 0, _ => m

| S n’, 0 => n

| S n’, S m’ => S (max n’ m’)

end.

Fixpoint min n m :=

match n, m with

| 0, _ => 0

| S n’, 0 => 0

| S n’, S m’ => S (min n’ m’)

end.

Parity tests

Fixpoint even n : bool :=

match n with

| 0 => true

| 1 => false

| S (S n’) => even n’

end.

Definition odd n := negb (even n).

Power

Fixpoint pow n m :=

match m with

| 0 => 1

| S m => n * (n^m)

end

where "n ^ m" := (pow n m) : nat_scope.

Euclidean division

This division is linear and tail-recursive. In divmod, y is the

predecessor of the actual divisor, and u is y minus the real remainder

Fixpoint divmod x y q u :=

match x with

| 0 => (q,u)

| S x’ => match u with

| 0 => divmod x’ y (S q) y

| S u’ => divmod x’ y q u’
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end

end.

Definition div x y :=

match y with

| 0 => y

| S y’ => fst (divmod x y’ 0 y’)

end.

Definition modulo x y :=

match y with

| 0 => y

| S y’ => y’ - snd (divmod x y’ 0 y’)

end.

Infix "/" := div : nat_scope.

Infix "mod" := modulo (at level 40, no associativity) : nat_scope.

Greatest common divisor

We use Euclid algorithm, which is normally not structural, but Coq is

now clever enough to accept this (behind modulo there is a subtraction,

which now preserves being a subterm)

Fixpoint gcd a b :=

match a with

| O => b

| S a’ => gcd (b mod (S a’)) (S a’)

end.

Square

Definition square n := n * n.

Square root

The following square root function is linear (and tail-recursive).

With Peano representation, we can’t do better. For faster algorithm,

see Psqrt/Zsqrt/Nsqrt... We search the square root of

n = k + p^2 + (q - r) with q = 2p and 0<=r<=q. We start with

p=q=r=0, hence looking for the square root of n = k. Then we

progressively decrease k and r. When k = S k’ and r=0, it means we can

use (S p) as new sqrt candidate, since (S k’)+p^2+2p = k’+(S

p)^2. When k reaches 0, we have found the biggest p^2 square contained

in n, hence the square root of n is p.

Fixpoint sqrt_iter k p q r :=

match k with

| O => p

| S k’ => match r with

| O => sqrt_iter k’ (S p) (S (S q)) (S (S q))

| S r’ => sqrt_iter k’ p q r’

end

end.
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Definition sqrt n := sqrt_iter n 0 0 0.

Log2

This base-2 logarithm is linear and tail-recursive. In

log2_iter, we maintain the logarithm p of the counter q, while r is

the distance between q and the next power of 2, more precisely q + S r

= 2^(S p) and r<2^p. At each recursive call, q goes up while r goes

down. When r is 0, we know that q has almost reached a power of 2, and

we increase p at the next call, while resetting r to q. Graphically

(numbers are q, stars are r) :

10

9

8

7 *

6 *

5 ...

4

3 *

2 *

1 * *

0 * * *

We stop when k, the global downward counter reaches 0. At that moment,

q is the number we’re considering (since k+q is invariant), and p its

logarithm.

Fixpoint log2_iter k p q r :=

match k with

| O => p

| S k’ => match r with

| O => log2_iter k’ (S p) (S q) q

| S r’ => log2_iter k’ p (S q) r’

end

end.

Definition log2 n := log2_iter (pred n) 0 1 0.

Iterator on natural numbers

Definition iter (n:nat) {A} (f:A->A) (x:A) : A :=

nat_rect (fun _ => A) x (fun _ => f) n.

Bitwise operations We provide here some bitwise operations for unary

numbers. Some might be really naive, they are just there for

fullfiling the same interface as other for natural representations. As

soon as binary representations such as NArith are available, it is

clearly better to convert to/from them and use their ops.

Fixpoint div2 n :=

match n with

| 0 => 0

| S 0 => 0

| S (S n’) => S (div2 n’)

end.

Fixpoint testbit a n : bool :=
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match n with

| 0 => odd a

| S n => testbit (div2 a) n

end.

Definition shiftl a := nat_rect _ a (fun _ => double).

Definition shiftr a := nat_rect _ a (fun _ => div2).

Fixpoint bitwise (op:bool->bool->bool) n a b :=

match n with

| 0 => 0

| S n’ =>

(if op (odd a) (odd b) then 1 else 0) +

2*(bitwise op n’ (div2 a) (div2 b))

end.

Definition land a b := bitwise andb a a b.

Definition lor a b := bitwise orb (max a b) a b.

Definition ldiff a b := bitwise (fun b b’ => andb b (negb b’)) a a b.

Definition lxor a b := bitwise xorb (max a b) a b.



Chapter 11

Binary Power in COQ by
Casteran and Sozeau

From Casteran and Sozeau[Cast16]:

(* About integer powers (monomorphic version) *)

Set Implicit Arguments.

Require Import ZArith.

Require Import Div2.

Require Import Program.

Open Scope Z_scope.

Let us consider a simple arithmetic operation: raising some integer x to the n-th power,
where n is a natural number. The following function definition is a direct translation of the
mathematical concept:

Fixpoint power (a:Z)(n:nat) :=

match n with 0%nat => 1

| S p => a * power a p

end.

Eval vm_compute in power 2 40.

= 1099511627776 : Z

This definition can be considered as a very naive way of programming, since computing
xn requires n multiplications. Nevertheless, this definition is very simple to read, and ev-
eryone can admit that it is correct with respect to the mathematical definition. Thus, we
can consider it as a specification: when we write more efficient but less readable functions
for exponentiation, we should be able to prove their correctness by proving in Coq their
equivalence with the naive power function.

The following function allows one to compute xn, with a number of multiplications propor-
tional to log2(n):

Program

Fixpoint binary_power_mult (acc x:Z) (n:nat) {measure (fun i=>i) n} : Z

(* acc * (power x n) *) :=

match n with

| 0%nat => acc

| _ => if Even.even_odd_dec n
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then binary_power_mult acc (x * x) (div2 n)

else binary_power_mult (acc * x) (x * x) (div2 n)

end.

Solve Obligations with program_simpl; intros; apply lt_div2; auto with arith.

Definition binary_power (x:Z)(n:nat) := binary_power_mult 1 x n.

Eval vm_compute in binary_power 2 40.

= 1099511627776 : Z

Goal binary_power 2 234 = power 2 234.

reflexivity.

Qed.

We want now to prove binary power’s correctness, i.e. that this function and the naive
power function are pointwise equivalent.

Proving this equivalence in Coq may require a lot of work. Thus it is not worth at all writing
a proof dedicated only to powers of integers. In fact, the correctness of binary power with
respect to power holds in any structure composed of an associative binary operation on
some domain, that admits a neutral element. For instance, we can compute powers of
square matrices using the most efficient of both algorithms.

Thus, let us throw away our previous definition, and try to define them in a more generic
framework.

11.1 On Monoids

Definition 2.1 A monoid is a mathematical structure composed of

• a carrier A

• a binary, associative operation ◦ on A

• a neutral element 1 ∈ A for ◦

Such a mathematical structure can be defined in Coq as a type class. [Soze08]. In the
following definition, parameterized by a type A (implicit), a binary operation dot and a
neutral element unit, three fields describe the properties that dot and unit must satisfy.

Class Monoid {A:Type}(dot : A -> A -> A)(one : A) : Prop := {

dot_assoc : forall x y z:A, dot x (dot y z) = dot (dot x y) z;

unit_left : forall x, dot one x = x;

unit_right : forall x, dot x one = x }.

Note that other definitions could have been given for representing this mathematical struc-
ture.

From an implementational point of view, such a type class is just a record type, i.e. an
inductive type with a single constructor Build Monoid

Print Monoid.

Record Monoid (A:Type)(dot : A -> A -> A)(one : A) : Prop := Build_Monoid

{ dot_assoc : forall x y z:A, dot x (dot y z) = dot (dot x y) z;

one_left : forall x, dot one x = x;
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one_right : forall x, dot x one = x }

For Monoid: Argument A is implicit and maximally inserted

For Build_Monoid: Argument A is implicit

For Monoid: Argument scopes are [type_scope _ _]

For Build_Monoid: Argument scopes are [type_scope _ _ _ _ _]

Nevertheless, implementation of type classes by M. Sozeau provides several specific tools —
dedicated tactics for instance –, and we advise the reader not to replace the Class keyword
with Record or Inductive.

With the command About, we can see the polymorphic type of the fields of the class Monoid:

About one_left

one_left:

forall (A : Type) (dot : A -> A -> A) (one : A),

Monoid dot one -> forall x : A, dot one x = x

Arguments A, dot, one, Monoid are implicit and maximally inserted

Argument scopes are [type_scope _ _ _ _]

one_left is transparent

Classes and Instances

Members of a given class are called instances of this class. Instances are defined to the
Coq system through the Instance keyword. Our first example is a definition of the monoid
structure on the set Z of integers, provided with integer multiplication, with 1 as the neutral
element. Thus we give these parameters to the Monoid class (note that Z is implicitly given).

Instance ZMult : Monoid Zmult 1

For this instance to be created, we need to prove that the binary operation Zmult is asso-
ciative and admits 1 as the neutral element. Applying the constructor Build Monoid – for
instance with the tactic split – generates three subgoals.

split.

3 subgoals

=================================================

forall x y z : Z, x * (y * z) = x * y * z

subgoal 2 is:

forall x : Z, 1 * x = x

subgoal 3 is:

forall x : Z, x * 1 = x

Each subgoal is easily solved by intros; ring.

When the proof is finished, we register our instance with a simple Qed. Note that we used
Qed because we consider a class of sort Prop. In some cases where instances must store some
information constants, ending an instance construction with Defined may be necessary.

Check Zmult.

ZMult : Monoid Zmult 1

We explained on the preceding page why it is better to use the Class keyword than Record

or Inductive. For the same reason, the definition of an instance of some class should be
written using Instance and not Lemma, Theorem, Example, etc. nor Definition.
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A generic definition of power

We are now able to give a definition of the function power than can be applied with any
instance of class Monoid:

A first definition could be

Fixpoint power {A:Type}{dot:A->A->A}{one:A}{M: Monoid dot one}

(a:A)(n:nat) :=

match n with 0:nat => one

| S p => dot a (power a p)

end.

Compute power 2 10.

= 1024 : Z

Happily, we can make the declaration of the three first arguments implicit, by using the
Generalizable Variables command:

Reset power.

Generalizable Variables A dot one.

Fixpoint power ‘{M: Monoid A dot one}(a:A)(n:nat) :=

match n with 0%nat => one

| S p => dot a (power a p)

end.

Compute power 2 10.

= 1024 : Z

The variables A dot one appearing in the binder for M are implicitly bound before the binder
for M and their types are inferred from the Monoid A dot one type. This syntactic sugar
helps abbreviate bindings for classes with parameters. The resulting internal Coq term is
exactly the same as the first definition above.

Instance Resolution

The attentive reader has certainly noticed that in the last computation, the binary operation
Zmult and the neutral element 1 need not to be given explicitly. The mechanism that allows
Coq to infer all the arguments needed by the power function to be applied is called instance
resolution.

In order to understand how it operates, let’s have a look at power’s type:

About power.

power :

forall (A : Type) (dot : A -> A -> A) (one : A),

Monoid dot one -> A -> nat -> A

Arguments A, dot, one, M are implicit and maximally inserted

Compute power 2 100.

= 1267650600228229401496703205376 : Z

Set Printing Implicit.

Check power 2 100.

@power Z Zmult 1 Zmult 2 100 : Z

Unset Printing Implicit.
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We see that the instance ZMult has been inferred from the type of 2. We are in the simple
case where only one monoid of carrier Z has been declared as an instance of the Monoid class.

The implementation of type classes in Coq can retrieve the instance ZMult from the type Z,
then filling the arguments ZMult and 1 from ZMult’s definition.

11.2 More Monoids

Matrices over some ring

We all know that multiplication of square matrices is associative and admits identity matrices
as neutral elements. For simplicity’s sake let us restrict our study to 2 × 2 matrices over
some ring.

We first load the Ring library, then open a section with some useful declarations and nota-
tions.

Require Import Ring.

Section matrices.

Variables (A:Type)

(zero one : A)

(plus mult minus : A -> A -> A)

(sym : A -> A).

Notation "0" := zero.

Notation "1" := one.

Notation "x + y" := (plus x y).

Notation "x * y" := (mult x y).

Variable rt : ring_theory zero one plus mult minus sym (@eq A).

Add Ring Aring : rt.

We can now define a carrier type for 2× 2-matrices, as well as matrix multiplication and the
identity matrix.

Structure M2 : Type := {c00 : A; c01 : A; c10 : A; c11 : A}.

Definition Id2 : M2 := Build_M2 1 0 0 1.

Definition M2_mult (m m’:M2) : M2 :=

Build_M2 (c00 m * c00 m’ + c01 m * c10 m’)

(c00 m * c01 m’ + c01 m * c11 m’)

(c10 m * c00 m’ + c11 m * c10 m’)

(c10 m * c01 m’ + c11 m * c11 m’).

As for multiplication of integers, we can now define an instance of Monoid for the type M2.

Global Instance M2_Monoid : Monoid (M2_mult plus mult) (Id2 0 1).

split.

destruct x; destruct y; destruct z; simpl.

unfold M2_mult. apply M2_eq_intros; simpl; ring.

destruct x; simpl;

unfold M2_mult; apply M2_eq_intros; simpl; ring.

destruct x; simpl;

unfold M2_mult; apply M2_eq_intros; simpl; ring.

Qed.
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End matrices.

We want now to play with 2 × 2 matrices over Z. We declare an instance M2Z for this
purpose, and can use directly the function power.

Instance M2Z : Monoid _ _ := M2_Monoid Zth.

Compute power (Build_M2 1 1 1 0) 40.

= {|

c00 := 165580141;

c01 := 102334155;

c10 := 102334155;

c11 := 63245986 |}

: M2 Z

Definition fibonacci (n:nat) :=

C00 (power (Build_M2 1 1 1 0) n).

Compute fibonacci 20.

= 10946

:Z

11.3 Reasoning within a Type Class

We are now able to consider again the equivalence between two functions for computing
powers. Let use define the binary algorithm for any monoid.

First, we define an auxiliary function. We use the Program extension to define an efficient
version of exponentiation using an accumulator. The function is defined by well-founded
recursion on the exponent n.

Function binary_power_mult (A:Type) (dot:A->A->A) (one:A)

(M: @Monoid A dot one) (acc x:A)(n:nat){measure (fun i=>i) n} : A

(* acc * (x ** n) *) :=

match n with

| 0%nat => acc

| _ => if Even.even_odd_dec n

then binary_power_mult _ acc (dot x x) (div2 n)

else binary_power_mult _ (dot acc x) (dot x x) (div2 n)

end.

intros; apply lt_div2; auto with arith.

intros; apply l2_div2; auto with arith.

Defined.

Definition binary_power ‘{M:Monoid} x n := binary_power_mult M one x n.

Compute binary_power 2 100.

= 1267650600228229401496703205376 : Z

The Equivalence Proof

The proof of equivalence between power and binary power is quite long, and can be split in
several lemmas. Thus, it is useful to open a section, in which we fix some arbitrary monoid
M. Such a declaration is made with the Context command, which can be considered as a
version of Variables for declaring arbitrary instances of a given class.
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Section About_power.

Require Import Arith.

Context ‘(M:Monoid A dot one ).

It is good practice to define locally some specialized notations and tactics.

Ltac monoid_rw :=

rewrite (@one_left A dot one M) ||

rewrite (@one_right A dot one M)||

rewrite (@dot_assoc A dot one M).

Ltac monoid_simpl := repeat monoid_rw.

Local Infix "*" := dot.

Local Infix "**" := power (at level 30, no associativity).

Some Useful Lemmas About power

We start by proving some well-known equalities about powers in a monoid. Some of these
equalities are integrated later in simplification tactics.

Lemma power_x_plus : forall x n p, x ** (n + p) = x ** n * x ** p.

Proof.

induction n as [| p IHp];simpl.

intros; monoid_simpl;trivial.

intro q;rewrite (IHp q); monoid_simpl;trivial.

Qed.

Ltac power_simpl := repeat (monoid_rw || rewrite <- power_x_plus).

Lemma power_commute : forall x n p,

x ** n * x ** p = x ** p * x ** n.

Proof.

intros x n p;power_simpl; rewrite (plus_comm n p);trivial.

Qed.

Lemma power_commute_with_x : forall x n ,

x * x ** n = x ** n * x.

Proof.

induction n;simpl;power_simpl;trivial.

repeat rewrite <- (@dot_assoc A dot one M); rewrite IHn; trivial.

Qed.

Lemma power_of_power : forall x n p, (x ** n) ** p = x ** (p * n).

Proof.

induction p;simpl;[| rewrite power_x_plus; rewrite IHp]; trivial.

Qed.

Lemma power_S : forall x n, x * x ** n = x ** S n.

Proof. intros;simpl;auto. Qed.

Lemma sqr : forall x, x ** 2 = x * x.

Proof.

simpl;intros;monoid_simpl;trivial.

Qed.
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Ltac factorize := repeat (

rewrite <- power_commute_with_x ||

rewrite <- power_x_plus ||

rewrite <- sqr ||

rewrite power_S ||

rewrite power_of_power).

Lemma power_of_square : forall x n, (x * x) ** n = x ** n * x ** n.

induction n;simpl;monoid_simpl;trivial.

repeat rewrite dot_assoc;rewrite IHn; repeat rewrite dot_assoc.

factorize; simpl;trivial.

Qed.

Final Steps

We are now able to prove that the auxiliary function binary power mult satisfies its intuitive
meaning. The proof uses well-founded induction and the lemmas proven in the previous
section.

Lemma binary_power_mult_ok :

forall n a x, binary_power_mult a x n = a * x ** n.

Proof.

intro n; pattern n;apply lt_wf_ind.

clear n; intros n Hn; destruct n.

intros;simpl; monoid_simpl; trivial.

intros; rewrite binary_power_mult_equation.

destruct (Even.even_odd_dec (S n)).

rewrite Hn. rewrite power_of_square; factorize.

pattern (S n) at 3;replace (S n) with (div2 (S n) + div2 (S n))%nat;auto.

generalize (even_double _ e);simpl;auto.

apply lt_div2;auto with arith.

rewrite Hn.

rewrite power_of_square ; factorize.

pattern (S n) at 3;replace (S n) with (S (div2 (S n) + div2 (S n)))%nat;auto.

rewrite <- dot_assoc; factorize;auto.

generalize (odd_double _ o);intro H;auto.

apply lt_div2;auto with arith.

Qed.

Then the main theorem follows immediately:

Lemma binary_power_ok : forall (x:A) (n:nat), binary_power x n = x ** n.

Proof.

intros n x;unfold binary_power;rewrite binary_power_mult_ok;

monoid_simpl;auto.

Qed.

Discharging the Context

It is time to close the section we opened for writing our proof of equivalence. The theorem
binary power ok is now provided with a universal quantification over all the parameters of
any monoid.

End About_power.
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About binary_power_ok.

binary_power_ok :

forall (A : Type) (dot : A -> A -> A) (one : A) (M : Monoid dot one)

(x : A) (n : nat), binary_power x n = power x n

Arguments A, dot, one M are implicit and maximally inserted

Argument scopes are [type_scope _ _ _ _ nat_scope]

binary_power_ok is opaque

Expands to Constant Top.binary_power_ok

Check binary_power_ok 2 20.

binary_power_ok 2 20

: binary_power 2 20 = power 2 20

Let Mfib := Build_M2 1 1 1 0.

Check binary_power_ok Mfib 56.

binary_power_ok Mfib 56

: binary_power Mfib 56 = power Mfib 56

Subclasses

We could prove many useful equalities in the section about power. Nevertheless, we couldn’t
prove the equality (xy)n = xnyn because it is false in general – consider for instance the
free monoid of strings, or simply matrix multiplication. But this equality holds in every
commutative (a.k.a Abelian) monoid.

Thus we say that Abelian monoids form a subclass of the class of monoids, and prove this
equality in a context declaring an arbitrary instance of this subclass.

Structurally, we parameterize the new class Abelian Monoid by an arbitrary instance M of
Monoid, and add a new field stating the commutativity of dot. Please keep in mind that we
declared A, dot, and one as generalizable variables, hence we can use the backquote symbol
here.

Class Abelian_Monoid ‘(M:Monoid A dot one) := {

dot_comm : forall x y, dot x y = dot y x}.

A quick look at the representation of Abelian Monoid as a record type helps us understand
how this class is implemented.

Print Abelian_Monoid.

Record Abelian_Monoid (A : Type) (dot : A -> A -> A)

(one : A) (M : Monoid dot one) : Prop := Build_Abelian_Monoid

{dot_comm : forall x y : A, dot x y = dot y x }

For Abelian_Monoid: Arguments A, dot, one are implicit and maximally inserted

For Build_Abelian_Monoid: Arguments A, dot, one are implicit

For Abelian_Monoid: Arguemnt scopes are [type_scope _ _ _]

For Build_Abelian_Monoid: Argument scopes are [type_scope _ _ _ _]

For building an instance of Abelian Monoid we can start from ZMult, the monoid on Z,
adding a proof that integer multiplication is commutative.

Instance ZMult_Abelian : Abelian_Monoid ZMult.

split.
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exact Zmult_comm.

Qed.

We can now prove our equality by building an appropriate context. Note that we can specify
just the parameters of the monoid here in the binder of the Abelian monoid, an instance of
monoid on those same parameters is automatically generalized. Superclass parameters are
automatically generalized inside quote binders. Again, this is simply syntactic sugar.

Section Power_of_dot.

Context ‘{M: Monoid A} {AM:Abelian_Monoid M}.

Theorem power_of_mult : forall n x y,

power (dot x y) n = dot (power x n) (power y n).

Proof.

induction n;simpl.

rewrite one_left;auto.

intros; rewrite IHn; repeat rewrite dot_assoc.

rewrite <- (dot_assoc x y (power x n)); rewrite (dot_comm y (power x n)).

repeat rewrite dot_assoc;trivial.

Qed.

End Power_of_dot.

Check power_of_mult 3 4 5.

power_of_mult 3 4 5

: power (4 * 5) 3 = power 4 3 * power 5 3
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Proof Tower Layer: C11 using
CH2O

From Krebbers[Kreb17]

Module example gcd

Require Import String axiomatic simple.

Section gcd.
Context ‘{EnvSpec K}.
Hint Extern 10 (Some Readable ⊆ ) ⇒ transitivity (Some Writable).
Hint Extern 0 (perm locked = ) ⇒

apply perm Readable locked; auto : typeclass instances.

Hint Resolve ax load’ ax var’ assert memext l’ assert eval int cast self’
assert memext r’ assert and l assert singleton eval assert int typed eval
assert eval singleton r assert eval singleton l assert and intro : exec.

Ltac exec :=
repeat match goal with A := : assert ⊢ ⇒ progress unfold A end;
simpl; eauto 20 with exec.

Definition gcd stmt : stmt K :=
”l” :; if{load (var 1)} local{uintT} (

!(var 2 ::= (
var 0 ::= load (var 1) @{ArithOp ModOp} load (var 2),,
var 1 ::= load (var 2),,
load (var 0)));;

goto ”l”
) else skip.

Lemma gcd typed : (∅,∅,[uintT%T;uintT%T]) ⊢ gcd stmt : (false,None).
Proof.
Lemma gcd correct Γ δ R J T C y z µ1 γ1 µ2 γ2 :

sep valid γ1 → Some Writable ⊆ perm kind γ1 →
sep valid γ2 → Some Writable ⊆ perm kind γ2 →
J ”l”%string ≡ {Γ,δ} (∃ y’ z’,

⌜ Z.gcd y’ z’ = Z.gcd y z ⌝%Z
var 0 7→ {µ1,γ1} #intV{uintT} y’ : uintT
var 1 7→ {µ2,γ2} #intV{uintT} z’ : uintT)%A →

Γ δ R J T C |=s
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{{ var 0 7→ {µ1,γ1} #intV{uintT} y : uintT
var 1 7→ {µ2,γ2} #intV{uintT} z : uintT }}
gcd stmt

{{ var 0 7→ {µ1,γ1} #intV{uintT} (Z.gcd y z) : uintT
var 1 7→ {µ2,γ2} #intV{uintT} 0 : uintT }}.

Proof.
End gcd.
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Other Ideas to Explore

Computerising Mathematical Text[Kama15] explores various ways of capturing mathemati-
cal reasoning.

Chlipala[Chli15] gives a pragmatic approach to COQ.

Medina-Bulo et al.[Bulo04] gives a formal verification of Buchberger’s algorithm using ACL2
and Common Lisp.

Théry[Ther01] used COQ to check an implementation of Buchberger’s algorithm.

Pierce[Pier15] has a Software Foundations course in COQ with downloaded files in Pier15.tgz.

Spitters[Spit11] Type Classes for Mathematics in Coq. Also see http://www.eelis.net/research/math-classes/

Mahboubi[Mahb16] Mathematical Components. This book contains a proof of the Euclidean
algorithm using COQ.

Aczel[Acze13] Homotopy Type Theory
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Appendix A

The Global Environment

Let S be a set. Let ◦ be a binary operation. Let + be an additive operation. Let ∗ be a
multiplicative operation.

Axiom 1 (Magma) A Magma is the set S with a closed binary operation S ◦ S → S
such that

∀a, b ∈ S ⇒ a ◦ b ∈ S

.

Axiom 2 (Semigroup) A Semigroup is a Magma with the operation ◦ that is associa-
tive such that

∀a, b, c ∈ S ⇒ (a ◦ b) ◦ c = a ◦ (b ◦ c)

Axiom 3 (Abelian Semigroup) An Abelian Semigroup is a Semigroup with the op-
eration ◦ that is commutative such that

∀a, b ∈ S ⇒ a ◦ b = b ◦ a

Axiom 4 (Monoid) A Monoid is a Semigroup with an identity element e ∈ S such
that

∀a ∈ S ⇒ e ◦ a = a ◦ e = a

Axiom 5 (Group) A Group is a Monoid with an inverse element b ∈ S and an identity
element i ∈ S such that

∀a ∈ S ∃b ∈ S ⇒ a ◦ b = b ◦ a = i

Axiom 6 (Group Unique Identity) A Group has a unique identity element e ∈ S
such that

∃e ∧ ∀a, b ∈ S ∧ a ̸= e ∧ b ̸= e⇒ a ◦ b ̸= e

Axiom 7 (Group Unique Inverse) A Group has a unique inverse element i ∈ S
such that

∃i ∧ ∀a, b ∈ S ∧ a ̸= i ∧ b ̸= i⇒ a ◦ b ̸= i

Axiom 8 (Group Right Quotient) A Group has a Right Quotient (right division)
such that

x ◦ a = b⇒ x ◦ a ◦ a−1 = b ◦ a−1 ⇒ x = b ◦ a−1
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Axiom 9 (Group Left Quotient) A Group has a Left Quotient (left division) such
that

a ◦ x = b⇒ a−1 ◦ a ◦ x = a−1 ◦ b⇒ x = a−1 ◦ b

Axiom 10 (Abelian Group) An Abelian Group is a Group with the operation ◦ that
is commutative such that

∀a, b ∈ S ⇒ a ◦ b = b ◦ a

Axiom 11 (Abelian Group Quotient) An Abelian Group has a Quotient (division)
such that

a−1 ◦ a ◦ x = a ◦ a−1 ◦ x

Axiom 12 (Euclidean Domain) Let R be an integral domain. Let f be a function from
R\{0} to the NonNegativeInteger domain. If a and b are in R and b is nonzero, then there
are q and r in R such that a = bq + r and either r = 0 or f(r) < f(b)
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Related work

Adams[Adam01]

Ballarin[Ball95]

Davenport[Dave02]

Harrison[Harr98]

Clarke[Clar91] ... shows several proofs
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separation of proof search and checking in some detail, relating
it to proof planning and to the complexity class NP, and discuss
different ways of exploiting a physical link between systems. Fi-
nally, the method is illustrated by some concrete examples of
computer algebra results proved formally in the HOL theorem
prover with the aid of Maple.

Link: http://www.cl.cam.ac.uk/~jrh13/papers/cas.ps.gz

[Hoar69] C. A. R. Hoare. An axiomatic basis for computer programming. CACM,
12(10):576–580, 1969.

Abstract: In this paper an attempt is made to explore the log-
ical foundations of computer programming by use of techniques
which were first applied in the study of geometry and have later
been extended to other branches of mathematics. This involves
the elucidation of sets of axioms and rules of inference which can
be used in proofs of the properties of computer programs. Exam-
ples are given of such axioms and rules, and a formal proof of a
simple theorem is displayed. Finally, it is argued that important
advantages, both theoretical and practical, may follow from a
pursuance of these topics

Link: https://www.cs.cmu.edu/~crary/819-f09/Hoare69.

pdf

[Jack95] Paul Bernard Jackson. Enhancing the NUPRL Proof Development System
and Applying it to Computational Abstract Algebra. PhD thesis, Cornell
University, 1 1995.

Abstract: This thesis describes substantial enhancements that
were made to the software tools in the Nuprl system that are
used to interactively guide the production of formal proofs. Over
20,000 lines of code were written for these tools. Also, a cor-
pus of formal mathematics was created that consists of roughly
500 definitions and 1300 theorems. Much of this material is of a
foundational nature and supports all current work in Nuprl. This
thesis concentrates on describing the half of this corpus that is
concerned with abstract algebra and that covers topics central to
the mathematics of the computations carried out by computer
algebra systems. The new proof tools include those that solve lin-
ear arithmetic problems, those that apply the properties of order
relations, those that carry out inductive proof to support recur-
sive definitions, and those that do sophisticated rewriting. The
rewrite tools allow rewriting with relations of differing strengths
and take care of selecting and applying appropriate congruence
lemmas automatically. The rewrite relations can be order rela-
tions as well as equivalence relations. If they are order relations,
appropriate monotonicity lemmas are selected. These proof tools

http://www.cl.cam.ac.uk/~jrh13/papers/cas.ps.gz
https://www.cs.cmu.edu/~crary/819-f09/Hoare69.pdf
https://www.cs.cmu.edu/~crary/819-f09/Hoare69.pdf


BIBLIOGRAPHY 75
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